
M2 CHPS

[Data & Apprentissage]

Introduction à la science des données et à
l’apprentissage

Nicolas Vayatis

Deep learning

”Big picture” of Learning

Machine Learning

What we have seen so far

Supervised machine learning
Setup

• Data: (X1,Y1), . . . , (X1,Y1) with Xi being a vector of
variables (factors) for observation i , and Yi being the label of
Xi

• Hypothesis class: set of functions h ∈ H

• Loss of a function h at a data point (X ,Y):

`(h(X),Y) ≥ 0

• Empirical risk of a function h over the data:

L̂n(h) =
1

n

n∑
i=1

`(h(Xi),Yi)

Machine Learning Methods
Principle

What is a Machine Learning Method:
• Problem characterized by three ingredients:

• Loss
• Hypothesis space
• Regularization

• ML algorithm characterized by an optimization strategy to
solve the minimization of regularized loss over the hypothesis
space

Machine Learning Methods
Examples seen so far

• General hypothesis space with function selected through
Empirical Risk Minimization (ERM) (could be shallow or deep)

• (Sparse) Linear models with parameters estimated through
(penalized) least square minimization

• Kernel ridge regression - Exercise: What are the hypothesis
space, the loss, the regularization, and the optimization
method in that case?

The latter is an example of popular and efficient shallow learning
method.

Deep Learning:

Introducing the main concepts

Deep Feedforward Network

• Hypothesis space: functions of the form

h(x , θ) = σm ◦ Am ◦ σm−1 ◦ ... ◦ A2 ◦ σ1 ◦ A1x

where θ =
(
A1, . . . ,Am

)
sequence of parameters to be

estimated through learning

• We denote by σ =
(
σ1, . . . , σm

)
the so-called activation

functions which are hyperparameters related to the choice of a
network architecture (which includes the number and size of
the layers - see below).

Deep Feedforward Network

• Optimization objective (far from convex! where is the
regularizer?):

min
θ

1

n

n∑
i=1

`(h(Xi , θ),Yi)

• Optimization method based on stochastic gradient descent
(iterates over data points)

θi+1 = θi − η
∂`(h(Xi , θ),Yi)

∂θ
(θi)

Deep Learning:

Why is it popular?

Deep means ’many layers’ (compositions)
between input and output...

Success of deep learning (1/3)
Computer Vision

Success of deep learning (2/3)
Speech recognition

Success of deep learning (3/3)
Natural Language processing

Shallow vs. Deep Learning
Vapnik vs. LeCun

The first algorithms to reach human performance on a visual task

• LeCun, Boser, et al. (1989).
Backpropagation Applied to
Handwritten Zip Code
Recognition, in Neural
Computation.

Architecture: 1000 units - 70,000 connections

• C. Cortes and V. Vapnik
(1995). Support-Vector
Networks, in Machine
Learning Journal.

Architecture: 1 kernel - 2 parameters

USPS ZIP code database

Goal for the class today

• Develop insights about deep learning and neural networks:
when it works and when it does not work, and what it means
to ”work” (open discussion)

• Practical guide to deep learning optimization and engineering

• Learn about the three mysteries of deep learning... and
connect to the machine learning concepts seen so far (such as
approximation error, complexity, and regularization)

Historical perspective
on neural networks

• Cybernetics (1940s-1960s)
• Achievement: modeling and training one neuron
• Key algorithm: Perceptron
• Paper: Rosenblatt (1958)

• Connectionism (1980s)
• Achievement: training one or two hidden layers
• Key algorithm: Backpropagation
• Paper: Rumelhart-Hinton-Williams (1986)

• Deep Learning (2007-....)
• Achievement: training multiple layers of representation
• Key algorithm: Stochastic gradient
• Papers: Hinton (2006), Bengio-LeCun (2007)

First wave: 1960s

The Perceptron

Primitive neural network
Single neuron Perceptron

Second wave: 1980’s

Multilayer perceptrons

1. Theory: Universal approximators
2. Algorithm: Backpropagation algorithm

Second wave: 1980’s

Multilayer perceptrons

1. Existence theorems of universal approximators

Stone-Weierstrass theorem

• Consider any continuous function f : [a, b]→ R, then for
any ε > 0, there exists a polynomial P such that:

sup
x∈[a,b]

|f (x)− P(x)| < ε .

Single-Layer Neural Network
Definition

• Single-layer neural network: Let σ
a ’smooth’ activation function. A
single-layer neural network with N
units and an activation function σ,
is a function of this form:

h(x) =
N∑

k=1

σ(aTk x + b), ∀x ∈ Rd

where a ∈ Rd , b ∈ R, N integer.
The number N corresponds to the
number of units in the hidden layer
of the network.

Activation function
Examples

Single-Layer Neural Network are universal
approximators

• Cybenko’s theorem: consider any continuous function
f : [0, 1]d → R, then for any ε > 0, there exists a single-layer
neural network h(x) =

∑N
k=1 σ(aTk x + b) (i.e. some N, a, b)

such that:
sup

x∈[a,b]
|f (x)− h(x)| < ε .

• Further work by Hornik-Stinchcombe-White (1989), Barron
(1993).

2. Backpropagation algorithm:

The key to multilayer perceptron calibration

Multilayer perceptron
More than one hidden layer!

• Hypothesis space: functions of the
form

h(x , θ) = σ◦Am◦σ◦...◦A2◦σ◦A1x

where θ =
(
A1, . . . ,Am

)
sequence

of parameters to be estimated
through learning and σ activation
function applied componentwise

Backpropagation
Principle

• Consider the square loss, then given a weight vector θ1, we
can evaluate the error as:

L(θ1) =
1

n

n∑
i=1

(
h(Xi , θ1)− Yi

)2

• The idea is to propagate the error backwards in the network
to update θ1 by the following rule:

θ2 = θ1 − η∇θL(θ1)

where η is the so-called learning rate.

Optional material
Computing the gradient with Backpropagation

Backpropagation
Background: Chain rule

• Consider the composition of three functions:

f (u) = ` ◦ σ ◦ g(x)

with t = σ ◦ g(u) and z = g(u) (everything in R here)

• The chain rule provides the expression for the derivative of f :

df

du
(u) =

d`

dt
(t)

dσ

dz
(z)

dg

du
(u) = `′(σ ◦ g(u))σ′(g(u))g ′(u)

Backpropagation
Background: Activation function

• Typical examples:

• For the logistic activation function: σ(z) =
1

1 + e−z
, we have

by standard algebra:

σ′(z) =
dσ

dz
(z) = σ(z)(1− σ(z))

Backpropagation
Toy example: the single unit case

• Consider a single unit (neuron): h(x , a) = σ(aT x) which is
connected to the output Y of the network

• The error of the predictions produced by this neuron on the
training data is the following:

L(a) =
1

n

n∑
i=1

`(σ(aTXi),Yi

)
where `(t, y) = (t − y)2 considering the square loss here.

Backpropagation
Gradient computation

• Apply the chain rule with three compositions in the case
where the last function is linear

• The gradient of L wrt a is given by:

∂L
∂aj

(a) =
1

n

n∑
i=1

∂`

∂t
(σ(aTXi),Yi)σ

′(aTXi)Xij

Backpropagation
Weight update

• Special case here: square loss, logistic activation function

∂`

∂t
(t,Yi) = 2(t − Yi) and σ′(z) = σ(z)(1− σ(z))

• The gradient update applied at input ’neurons’ is the following

∂L
∂aj

(a) =
2

n

n∑
i=1

(zi − Yi)zi (1− zi)Xij

where zi = σ(aTXi)

End of optional material

Backpropagation
Discussion

• In case of multiple
layers, it suffices to
apply the chain rule
upstream
For more details:
check Lecture notes
by Jake Abernethy
https:

//nbviewer.jupyter.org/format/

slides/github/thejakeyboy/

umich-eecs545-lectures/

• But does the gradient descent converge to the optimal
solution?

https://nbviewer.jupyter.org/format/slides/github/thejakeyboy/umich-eecs545-lectures/
https://nbviewer.jupyter.org/format/slides/github/thejakeyboy/umich-eecs545-lectures/
https://nbviewer.jupyter.org/format/slides/github/thejakeyboy/umich-eecs545-lectures/
https://nbviewer.jupyter.org/format/slides/github/thejakeyboy/umich-eecs545-lectures/

A new trade-off in Machine Learning
The three terms

Here: n sample size, ρ numerical tolerance in the optimization

Third wave: 2010s

From shallow to deep networks

1. How to build deep networks
2. The mysteries of deep learning

From shallow to deep networks

1. How to build deep networks

Engineering of deep learning

• Software environments for deep learning designed as
computational graphs (Theano, Keras, TensorFlow...)

• A computational graph is a way to represent a math function
in the language of graph theory.

• In a computational graph nodes are either input values or
functions for combining values.
Edges receive their weights as the data flows through the graph. Outbound edges from an input node are
weighted with that input value; outbound nodes from a function node are weighted by combining the
weights of the inbound edges using the specified function.

Regularization in deep learning
and why DL theory is difficult

Implicit in the objective, but lots of engineering tricks in the
computational graph:

• Weight decay

• Weight sharing

• Early stopping

• Model averaging

• Dropout

• Data augmentation

• Adversarial training

Implementation of Deep Learning
Examples on github

• https://github.com/enggen/Deep-Learning-Coursera/

• https:

//github.com/aymericdamien/TensorFlow-Examples/

https://github.com/enggen/Deep-Learning-Coursera/
https://github.com/aymericdamien/TensorFlow-Examples/
https://github.com/aymericdamien/TensorFlow-Examples/

The design problem (1/2)
Setup

• Denote by T the structural parameters of the deep network
(architecture, activity functions, regularization modes...) and
f̂T the function produced by deep learning given T

• Some estimate of the predictive error L̂(f̂T) of the function
supposed to be available (can be estimated by hold out, cross
validation...).

• Finding T is key to address the estimation-approximation
tradeoff

The design problem (2/2)
Selecting the structure

• Selecting the structure of a deep network is a meta-learning
problem

• The optimal architecture can be obtained if it is possible to
solve the following optimization problem:

min
T

L̂(f̂T)

which is generally nonconvex, nonsmooth

• Main approaches to find T : experience, heuristics, discrete
optimization, experimental design?

Other popular deep learning architectures

• Convolutional Neural Networks

• Recurrent Neural Networks

• Long Short Term Memory

• Auto-Encoders

• Boltzmann Machines, Belief Networks

• Generative Adversarial Networks

Other popular deep learning architectures
Convolutional Neural Networks

Other popular deep learning architectures
Auto-Encoders

From shallow to deep networks

2. The mysteries of Deep Learning

Mysteries about deep learning

• Approximation: deep better than shallow?

• Optimization: nonconvex with millions of dimensions (!)

• Overfitting: huge complexity

Facts about approximation theory

Comparison of Shallow vs. Deep Networks

• Poggio and Liao (2018): approximation of compositional
functions

• Liang and Srikant (2017): approximation of polynomial
functions

• Similar findings:
” the number of neurons needed by a shallow network to
approximate a function is exponentially larger than the cor-
responding number of neurons needed by a deep network
for a given degree of function approximation. ”

Facts about optimization in Deep Learning

• Under certain conditions, no poor local minima

• SGD avoids bad critical points

• Larger networks are better behaved (local minima are global)

References:

Soudry and Carmon (2016), “No bad local minima: Data independent training error guarantees for multilayer
neural networks”.
Kawaguchi (2016), “Deep learning without poor local minima”.
Haeffele and Vidal (2017), “Global optimality in neural network training”.
Janzamin, Sedghi, and Anandkumar (2015), “Beating the perils of non-convexity: Guaranteed training of neural
networks using tensor methods”.
Panageas and Piliouras (2016), “Gradient descent only converges to minimizers: Non-isolated critical points and
invariant regions”.

Brutzkus, Alon et al. (2017), “SGD Learns Over-parameterized Networks that Provably Generalize on Linearly

Separable Data”.

Vapnik’s theory applied to Deep Learning
Complexity of arrangements

• VC dimension of multilayer feedforward neural network with ω
parameters using step function for activation:

V ≤ 2ω log2(eω) can be quite huge...

