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Supervised Machine Learning
The bias-variance decomposition in Machine
Learning



General setup
Notations

• Goal of learning: an optimal decision function h∗ : X → Y
X : domain set, Y: label set

• Input of learning:
• Training data: a set of labeled data

Dn = {(X1,Y1), . . . , (Xn,Yn)}

of size n, where the (X ,Y )’s are in X × Y
• Hypothesis space: a collection H of candidate decision

functions h : X → Y

• Output of learning: an empirical decision function ĥ in the
hypothesis space H estimated from training data Dn

• Reference in H: the best decision function h̄ in the class (the
more data, the closer ĥ to h̄)



The key trade-off in Machine Learning

• Denote by L(h) the error measure for any decision function h

• We have: L(h̄) = inf
H

L , and L(h∗) = inf L

• Bias-Variance type decomposition of error for any output ĥ :

L(ĥ)− L(h∗) = L(ĥ)− L(h̄)︸ ︷︷ ︸
estimation (stochastic)

+ L(h̄)− L(h∗)︸ ︷︷ ︸
approximation (deterministic)



About approximation error

• Cybenko (1989) - Denseness result in the spirit of
Stone-Weierstrass showing that any linear combination of
compositions of sigmoid with linear functions is dense wrt the
supremum norm in the space of continuous functions over the
d-dimensional unit cube.

• Barron (1994) - Approximation error bound involves a
parameter quantifying the smoothness of the target function.

• Status of this question in the regression setup:
• For kernel machines: a full theory is available thanks to Smale

(2003), Steinwart (2008).
• For deep learning: recent work by Grohs, Perekrestenko,

Elbrächter, and Bölcskei (2019) .
• In the classification setup, tough problem, still open issue...



Reminder on linear models in
statistics
The regression case



The regression model

• Goal of learning: h∗ : Rd → R

• Observations: IID random pairs (Xi ,Yi ) ∈ Rd × R :

Yi = h∗(Xi ) + εi , i = 1, . . . , n

where εi is a random noise variable independent of X

• We shall use a vector notation as follows:

Y = h∗ + ε

where the three terms are all in Rn



Vector notations

• Elements in Rn:

Y = (Y1, . . . ,Yn)
T ,

ε = (ε1, . . . , εn)
T

• Image vectors: for any h ∈ H, we use the bold characters as

h = (h(X1), . . . , h(Xn))
T

• The image of data points through elements of H by

H(X ) = {h = (h(X1), . . . , h(Xn))
T , : h ∈ H}

• Norm in Rn :

∀u = (u1, . . . , un)
T ∈ Rn , ∥u∥2 =

n∑
i=1

u2i



Least square estimator (LSE)

• Definition of the LSE :

ĥn = argmin
h∈H(X )

1

n
∥Y − h∥2

where H(X ) = {h = (h(X1), . . . , h(Xn))
T , : h ∈ H}

• Assuming that the linear model is gaussian (i.e. the noise
variables are IID and follow a centered gaussian distribution
with fixed and known variance), then the LSE also
corresponds to the Maximum Likelihood estimator.



Gaussian linear model in Rd

Two additional assumptions

• The hypothesis space H is the class of linear functions of rank
d

• The noise vector ε = (ε1, . . . , εn)
T is a gaussian random

vector in Rn with distribution Nn(0, σ
2In)



Linear models in Rd

Examples

Notations: x = (x (1), . . . , x (d))T ∈ Rd

• Linear regression: h(x) =
∑d

k=1 βkx
(k)

• Basis/frame expansion (Fourier, splines, wavelets, etc.)

• Additive models: h(x) =
d∑

k=1

fk(x
(k))

• Piecewise constant regression (taking into account
breakpoints)



LSE in linear regression
• Denote by X ∈ Rn×d the data matrix and β ∈ Rd the

parameter to estimate

• Assumption: X is of full rank equal to d and assume d ≤ n

• Definition of LSE: β̂n = argminβ∈Rd
1
n∥Y − Xβ∥2

• Least square estimate: ĥn = Xβ̂n = X(XTX)−1XTY = Π̂Y



Proof of the LSE computation in linear
models

• β̂n = argmin
β∈Rd

R(β) where R(β) =
1

n
∥Y − Xβ∥2

• Gradient computation:

d

dβ

(
(Y − Xβ)T (Y − Xβ)

)
= −2YTX+ 2βTXTX ∈ R1×d

• First-order condition for the minimizer of a convex function:

−YT + βTXTX = 0

• Final result: β̂n = (XTX)−1XTY



Alternate proof based on chain rule

• Let: R(β) = ℓ(e(β)) where ℓ(e) = ∥e∥2 and e(β) = Y − Xβ

• Chain rule:
dR

dβ
=

∂ℓ

∂e

∂e

∂β
where the j-th element is given by:

dR

dβ
[j ] =

n∑
k=1

∂ℓ

∂e
[k]

∂e

∂β
[k , j ]

• Note that:
∂ℓ

∂e
= 2eT ∈ R1×n and

∂e

∂β
= −X ∈ Rn×d

• Finally:
dR

dβ
= −2eTX = −2(Y − Xβ)TX



What all student (should) know
The bias-variance trade-off in regression



We have seen so far

• Model: Y = h∗ + ε ∈ Rn

• Computation of LSE: ĥn = Π̂Y where Π̂ = X(XTX)−1XT

• A notion of risk:

L(ĥn) =
1

n
E
(
∥h∗ − ĥn∥2

)



Bias-variance decomposition (1/2)
Derivation

• First note that: ĥn = Π̂Y = Π̂(h∗ + ε) and then

h∗ − ĥn = (In − Π̂)h∗ − Π̂ε

• Note that Π̂ : Rn → Rn the orthogonal projection onto H(X ):

Π̂ ◦ Π̂ = Π̂

• By orthogonality of the images of In − Π̂ and Π̂:

L(ĥn) =
1

n
E
(
∥h∗ − ĥn∥2

)
=

1

n
E(∥(In − Π̂)h∗∥2 + ∥Π̂ε∥2)



Bias-variance decomposition (2/2)
Result

• Using an additional technical result (next slide):

L(ĥn) =
1

n
E
(
∥h∗ − ĥn∥2

)
=

1

n
E(∥(In − Π̂)h∗∥2 + ∥Π̂ε∥2)

=
1

n
E(∥(In − Π̂)h∗∥2)︸ ︷︷ ︸

bias

+ σ2 d

n︸︷︷︸
variance

• Used in model selection (e.g. AIC = Akaike Information
Criterion)



Explanation of the d/n term

Property on the norm of projections of gaussian random vectors:

• Assume Z is a gaussian random vector Nn(0, In) in Rn, H is a
linear subspace of Rn and Π : Rn → Rn a linear projection
onto H

• Then: the random vector ΠHZ has gaussian distribution
Nn(0,Π) on Rn (linear transformation of a gaussian is a
gaussian)

• Furthermore: ∥ΠZ∥2 follows a chi-square distribution with

E(∥ΠZ∥2) = dim(H)



How Machine Learning takes over linear
regression

1 What if non-additive noise? Other tasks than regression?

2 From linear to nonlinear models

3 What replaces the dimension d as a measure of complexity in
nonlinear models?

4 Is the d/n rate also typical for larger hypothesis classes?
What if d larger than n ?



From classical statistics to Machine
Learning

• Handling models in high dimensions:

d ≫ 1, d ≫ n

• Questioning dimensionality:

number of parameters vs. complexity of set of functions



High Dimensional Interlude
Some surprising fact

• Ratio shell/volume:

vol(Bd(0, 1)− Bd(0, 1− ε))

vol(Bd(0, 1))
= 1−(1−ε)d → 1 when d → ∞



High Dimensional Interlude
Readings

• High level position paper:

”High Dimensional Data Analysis : The Curses and Bless-
ings of Dimensionality” by D. Donoho (2000)

• Maths book:

”High-Dimensional Probability” by Roman Vershynin
(2018)



From classical statistics to Machine
Learning: Handling high dimensions
A. Sparsity and linear models
B. Estimating nonlinear functions
C. Generalizations



What ’high’ means for linear regression

• So far, we assumed: n ≥ d and (X) = d

• If d gets large, two things may/will happen:

• Instability in computing the inverse (XTX)−1

• Rank-deficiency of data matrix X

• Rank-deficient case (but still n ≥ d):
• There are many solutions to the LS problem...
• Get one LSE by using Moore-Penrose pseudo-inverse instead of

(XTX)−1 in the projection matrix
• The LSE is the solution with minimal ℓ2-norm

• Cure to instability: (ridge) regularization...



A. Sparsity and linear models
Tuning the dimension of the model



Linear regression model
Notations

• Vector notations:

Response vector Y ∈ Rn, input data matrix X (size n × d)

• Linear model with vector notations:

Y = Xβ∗ + ε

where ε random noise vector (centered, independent of X)



The sparse linear regression model

• Intuition: what if there are uninformative variables in the
model but we do not know which they are?

• Sparsity assumption: Let β∗ the true parameter which only a
subset of variables (called support)

m∗ = {j : β∗
j ̸= 0} ⊂ {1, . . . , d}

• ℓ0 norm of any β: ∥β∥0 =
d∑

j=1

I{βi ̸= 0}



Two possible formulations
Constrained vs. Penalized optimization

1 Ivanov formulation: take k between 0 and min{n, d}

min
β∈Rd

∥Y − Xβ∥22 subject to ∥β∥0 ≤ k

2 Tikhonov formulation: take λ > 0

min
β∈Rd

{
∥Y − Xβ∥22 + λ∥β∥0

}



Comments

• Tikhonov looks as a Lagrange formulation of Ivanov

• But here the two formulations are NOT equivalent due to the
lack of smoothness of the ℓ0 norm

• Ivanov with ℓ0 constraint is known as the Best Subset
Selection problem for which there are algorithms based on
heuristics (e.g. Forward Stagewise Regression) which work ok
up to k ≃ 35. Recent advances: check Mixed Integer
Optimization (MIO) formulation by Bertsimas et al. (2016).

• Focus on Tikhonov regularization from now on



Sparsity and linear models
Model selection



Connecting the dots
Tikhonov penalty and variance

Recall:

• Tikhonov formulation with ℓ0penalty : take λ > 0

min
β∈Rd

{
∥Y − Xβ∥22 + λ∥β∥0

}
(1)

• Bias-variance decomposition of the error for the LSE β̂:

1

n
E
(
∥Xβ∗ − Xβ̂n∥2

)
≃ Bias+ σ2 d

n
(2)

where d is the dimension of the data and σ2 is the variance of
the Gaussian noise

Questions for now: does the bias-variance decomposition (2)
explains (1)? Is the penalty correct?



Model selection in linear models

• Model: Y = Xβ∗ + ε

• Consider a model for β∗ that is a subset m of indices of
{1, . . . , d}

• Example: In dimension d = 3, we have:
• 1 model of size |m| = 0: constant model
• 3 models of size |m| = 1: {1}, {2}, {3}
• 3 models of size |m| = 2: {1, 2}, {2, 3}, {1, 3}
• 1 model of size |m| = 3: {1, 2, 3}

We potentially have 8 versions of Least Square Estimator
(LSE), we call call constrained LSE (except for the case
|m| = 3 which is unconstrained).



Model selection in linear models

• Consider the set M of subsets m of the variables among
indices {1, . . . , d}. There are 2d such sets m.

• For every m ∈ M, there is a standard linear regression model
with dimension |m|. In other words, for those j /∈ m, we have
θ∗j = 0.

• Denote by Xm the submatrix of X of size n × |m| which
contains only the columns whose index belongs to m

• For each model m ∈ M, compute the constrained Least

Square Estimator θ̂
(m)
n = (XT

mXm)
−1XT

mY ∈ R|m|.

• The final estimator is the ”best” among θ̂
(m)
n over all m ∈ M



What ”Best” actually means

• Denote by Xm the data matrix of size n × |m|

• Risk of the predictor: rm =
1

n
E
(
∥Xθ∗ − Xmθ̂

(m)
n ∥2

)
• Best theoretical estimator (called oracle):

θ̂
(m)
n where m = argmin

m∈M
rm

• Penalized LS with Akaike Information Criterion (AIC)

m̂ = argmin
m∈M

{
∥Y − Xmθ̂

(m)
n ∥2 + 2|m|σ2

}
(can be computed from data assuming σ2 is known)



Optional material
Derivation of Akaike Information Criterion



LSE in linear regression

• Denote by Xm the data matrix (n × |m|) and θ̂
(m)
n the LSE

• Prediction vector: Xmθ̂
(m)
n = Xm(XT

mXm)
−1XT

mY = Π̂mY



Bias-variance decomposition (1/2)
Derivation

• Note that Π̂m : Rn → Rn is the orthogonal projection onto the
space generated by the directions in m:

Π̂m ◦ Π̂m = Π̂m

• We have: Xmθ̂
(m)
n = Π̂mY = Π̂m(Xθ∗ + ε) and then

Xθ∗ − Xmθ̂
(m)
n = (In − Π̂m)Xθ

∗ − Π̂mε



Bias-variance decomposition (2/2)
Result

• Property of the projector: images of In − Π̂ and Π̂ are
orthogonal

• Therefore:

rm =
1

n
E
(
∥(In − Π̂m)Xθ

∗∥2 + ∥Π̂mε∥2
)

=
1

n
E
(
∥(In − Π̂m)Xθ

∗∥2
)
+ σ2 |m|

n

since ∥Π̂mε∥2 follows a chi-square distribution with |m|
degrees of freedom (property of projections of multivariate
gaussian vectors).



Akaike Information Criterion (1/2)
Derivation

• Similarly, we can derive:

1

n
E
(
∥Y − Xmθ̂

(m)
n ∥2

)
=

1

n
E(∥(In − Π̂m)Xθ

∗∥2) + σ2 (n − |m|)
n

Indeed: Y − Xmθ̂
(m)
n = (In − Π̂m)(Xθ∗ + ε) and ∥In − Π̂mε∥2

follows a chi-square distribution with n − |m| degrees of
freedom

• Combining the two identities, prediction error can be related
to risk:

1

n
E
(
∥Y − Xmθ̂

(m)
n ∥2

)
= rm + σ2 (n − 2|m|)

n



Akaike Information Criterion (2/2)
Empirical estimator of the error

• We have obtained that:

rm =
1

n
E
(
∥Y − Xmθ̂

(m)
n ∥2

)
+ σ2 (2|m| − n)

n

• Unbiased estimator of the error (assuming known variance):

r̂m =
1

n
∥Y − Xmθ̂

(m)
n ∥2 + σ2 (2|m| − n)

n

• Akaike Information Criterion

m̂ = argmin
m∈M

{
∥Y − Xmθ̂

(m)
n ∥2 + 2|m|σ2

}



End of optional material



AIC in large dimensions

• When d is large, is this practical ?

• There are about ed/2 models to scan in the worst case where
|m| ≃ d/2...



A. Sparsity and linear models
From (mathematical) statistics to optimization



Solving the computation burden
The power of convexity

• Practical methods for model selection are essentially greedy
heuristics consisting in adding and/or retrieving one variable
at the time to explore part of the whole model space which is
exponential in the dimension. Examples are: Forward
Stagewise Regression, Forward-Backward algorithm...

• Question: would it be possible to solve the optimization wrt
the unknown parameter β AND wrt to its support subset of
indices jointly?

• Answer is yes at the cost of the so-called relaxation of the
non-convex formulation with the ℓ0 penalty to a convexified
problem with an ℓ1 penalty.



The LASSO for linear models
From ℓ0 to ℓ1

• Consider the relaxation of the previous problem replacing the
ℓ0-norm by the ℓ1-norm:

∥β∥1 =
d∑

j=1

|βj |

• The new estimator is called the LASSO: for any λ > 0,

β̂λ ∈ argmin
β∈Rd

{
∥Y − Xβ∥2 + λ∥β∥1

}



Blessings of the LASSO

• Approximate solutions via efficient algorithms building the
so-called regularization paths λ → β̂λ:

• Theoretical soundness: it can be shown that: as n, d → ∞

1

n
E
(
∥Xβ∗ − Xβ̂∥2

)
≤ C∥β∗∥1

√
log d

n



The ”mother” of ML algorithms
Penalized optimization

• Learning process as the optimization of a data-dependent
criterion:

Criterion(h) =Training error(h) + λ Penalty(h)

• Training error: data-fitting term related to a loss function

• Penalty: complexity of the decision function

• Constant λ: smoothing parameter tuned through
cross-validation procedure



A. Sparsity and linear models
Structured sparsity



Putting human priors in penalties
Sparsity patterns



The simplest structured penalty
Group LASSO

• Group structure on the parameter β∗: let G the number of
groups of subsets of indices in {1, . . . , d} and, for
g = 1, . . . ,G , we denote by X(g) the submatrix of X with
variables in group g and by β(g) the coefficient vector applied
to variables in group g and dg is the size of group g .

• Group LASSO formulation:

β̂λ ∈ argmin
β∈Rd

∥Y − Xβ∥2 + λ

G∑
g=1

√
dg∥β(g)∥





Case of temporal patterns
Fused LASSO

• Enforcing temporal coherence leads to adding a penalty term:

β̂λ ∈ argmin
β∈Rd

∥Y − Xβ∥2 + λ∥β∥1 + µ
d∑

j=2

|βj − βj−1|





A. Sparsity and linear models
Ridge regression



Penalized optimization
Other penalties?

• Until now: hypothesis class with linear functions h ∈ H and
variations on sparsity-inducing penalties

Criterion(h) =Training error(h) + λ Penalty(h)

• This idea goes back to the 60s (Ivanov, John, Lavrent’ev,
Tikhonov) where the penalty operated as a regularizer of
solutions for ill-posed problems.



Ill-posed problem in statistics
High dimensional least square regression

• Assume d larger than n

• Then when solving the least square optimization problem, we
observe that we have less equations than variables: this is the
case of an underdetermined linear system.

• Another way to put this is to observe that XTX is not full
rank, hence it is not invertible and there is an infinity of
solutions.



The oldest regularizer in statistics
Ridge regression

• The Ridge estimator is the solution of the following penalized
optimization problem: for any λ > 0,

β̂λ ∈ argmin
β∈Rd

{
∥Y − Xβ∥2 + λ∥β∥22

}



Derivation of ridge regression estimator

• We denote the objective function:

F (β) = (Y − Xβ)T (Y − Xβ) + λβTβ

• Thanks to convexity and differentiability of F , we obtain the
solution by solving

∇F (β) = 2XT (Xβ − Y) + 2λβ = 0

• Solution:

β̂λ =
(
XTX+ λId

)−1
XTY

because XTX+ λId always invertible.

• Computation still painful for d very large...



Dual optimization problem
Formulation and KKT conditions

• Equivalent formulation of ridge regression optimization:

min
β∈Rd ,r∈Rn

{
1

2
∥r∥2 + λ

2
∥β∥2

}
subject to r = Xβ − Y

• Lagrange formulation with multiplier vector α

L(β, r , α) = 1

2
∥r∥2 + λ

2
∥β∥2 + αT (r − Xβ + Y)

• Karush-Kuhn-Tucker conditions: zeroing gradient wrt primal
variables β, r , leads to:

β(α) =
1

λ
XTα and r(α) = −α



Dual optimization problem
Resolution

• Then, an equivalent formulation of ridge regression
optimization is given by:

L(β(α), r(α), α) = 1

2
∥α∥2+ 1

2λ
∥XTα∥+αT

(
−α− 1

λ
XXTα+ Y

)
• Solution:

α̂ = λ
(
XXT + λIn

)−1
Y and β̂ =

1

λ
XT α̂



Dual optimization problem
Interpretation of the result

• The prediction on x ∈ Rd can be expressed in terms of α

xT β̂ =
1

λ
xTXT α̂ =

1

λ

n∑
i=1

α̂ix
TXi

• We can use the identity:

XT
(
XXT + λIn

)−1
=

(
XTX+ λId

)−1
XT to check the

solutions are the same.

• Important observation! Optimization and function evaluation
only require the pairwise scalar product between x ’s and data
points Xi ’s



Elastic Net
The best of LASSO and Ridge?

• Rationale (from [Zou and Hastie, 2005])

• Combination of ℓ1 and ℓ2 penalties

β̂λ ∈ argmin
β∈Rd

{
∥Y − Xβ∥2 + λ∥β∥1 + µ∥β∥22

}



LASSO vs. Elastic Net
Comparison of regularization paths



Tuning the hyperparameters
Cross-validation

• How do we select the parameters λ and µ? These are called
hyperparameters or smoothing parameters or regularization
parameters.

• This is a universal problem in monitoring the overfitting effect
of Machine Learning methods.

• The procedure of cross-validation will be developed later in
the course.



Exercise
Comparison of the three penalties

• Consider the following toy problem: Y ∼ N1(β
∗, 1) where β is

a real-valued parameter (d = 1).

• Find the three estimators when minimizing the following three
functions:

(i)
1

2
(Y −β)2+λ, (ii)

1

2
(Y −β)2+λ|β|, (iii)1

2
(Y −β)2+λβ2

• Show a plot of the estimators as functions of the
unconstrained LSE and explain the use of the following
terminology for the penalized procedures: hard thresholding,
soft thresholding, shrinkage.



B. Estimating nonlinear functions



From nonlinear to linear
Polynomial regression example

• Consider a polynomial regression in dimension d = 2: this
corresponds to a linear model of dimension d ′ = 7 with
feature vector:

Φ(x1, x2) = (1,
√
2x1,

√
2x2,

√
2x1x2, x

2
1 , x

2
2 )

T

• Note that:
Φ(x)TΦ(x ′) = (xT x ′ + 1)2

• We call K (x , x ′) = (xT x ′ + 1)2 a polynomial kernel. A kernel
has the property to be represented as a scalar product in a
high dimensional feature space. The feature space is the
image of the original input space of dimension d through Φ.
The feature space can be of huge dimension.



The magic of kernels
Kernel ridge regression

• In the linear case of ridge regression, we have seen that the
only data-dependent quantities that matter in both problem
formulation and evaluation of predictions are the pairwise
scalar products of XT

i Xj and xTXi .

• We can basically replace any scalar product by the kernel
evaluation of the considered pair without changing at all the
algorithmic complexity of resolution. We are then able to
estimate the parameters αi of nonlinear functions of the form:

f (x) =
n∑

i=1

αiK (x ,Xi )



Examples of basic kernels



How a kernel defines a metric
Definition



Kernel engineering

• Specific kernels have been design to process structured data
such as strings (text, DNA sequence...)

• Example of spectrum kernel used for DNA sequences:



Kernel machine learning estimation
Is it doable?

• Nice modeling properties of kernel functions

• The question is whether the penalized optimization in the
sense of least squares is feasible?



C. Generalizations
Application to other estimation problems



Penalized optimization
What about other variations?

• Until now: hypothesis class with linear functions h ∈ H and
variations on the penalties

Criterion(h) =Training error(h) + λ Penalty(h)

• From now on: play with other losses affects the Training error

Criterion(h) =Training error(h) + λ Penalty(h)



Using other loss functions



Next sessions

• Other tasks: linear models for classification

• The issue of representation: feature engineering, variable
selection , representation learning

• From linear to nonlinear models: what can be saved?


