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What we have seen so far

Machine Learning is about learning (= choosing =
estimating) a function from data

The key concept is the complexity of the function space
(" hypothesis space” ) where we look for our solution (" how
many functions we select from")

The art of learning is to use the data to adjust the complexity
of the hypothesis space - while implicitly considering the
approximation error.

In the particular case of least square linear regression,
complexity calibration can (also) be achieved by only selecting
and using a small subset of the variables (the problem of
variable selection).



Another " Big picture” of Learning
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Objectives for this class

® Focus on feature selection and feature learning: learning
("finding" or "choosing” ) a representation of the data

(Theory so far: focused on learning functions for prediction and on
bounding their generalization/prediction error for a given set of
features ("representation”))

® Today: Develop new regularisation/machine learning
formulations for other applications such as learning (=
estimating the missing entries of ) matrices - for example used
in recommender systems

® Also: We will learn about some optimization approaches to
solve machine learning formulations/methods (possibly
nonconvex optimization problems): Optimization is central
for machine learning



A primer on parsity

Sparsity-inducing regression methods: LASSO

Motivation in linear predictive models: relaxation of £y
constraint on number of independent variables used, namely
from minimizing

1Y = X5 + Allllo

to minimizing
1Y — X8 + AlBllx

Advantages: tractable computations, interpretable models

Byproduct: sparsistency (i.e. how many, and which variables
to use)



Application (today): Matrix completion
with (rank) Sparsity
(" Netflix Recommendation Competition™)
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Application (today): Matrix completion
with (rank) Sparsity
(" Netflix Recommendation Competition™)

Given a matrix M with missing values, find the matrix X with
minimal rank (why? - see later today) which coincides with
the available coefficients of M:

m)in{rank(X)} subject to Xjj = M ,Y(i,j) € Q

where Q = {(/,) : Mj; not missing}.

How to solve this difficult optimization problem? Why is it
difficult?



Sparse Feature Selection and Learning

A. Feature Selection: LASSO with optimization methods

B. Feature Learning: PCA and variants

C. Applications: matrix completion, sparse coding, compressed
sensing



A. Feature selection: LASSO with optimization
methods



The LASSO for linear models
From ¢y to /4

e Consider the LASSO estimation (learning) method: for any
A >0, R
B € argmin {||Y — X3? + A|| 8]l }
BERI
where the ¢1-norm is:
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Blessings of the LASSO

® Approximate solutions via efficient algorithms building the
so-called regularization path (find for all values of A the B()\)):

LASSO Path

Coefficients
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® Theoretical soundness: it can be shown that (if the real model
is linear): as n,d — oo

1 . ~ N log d
CE(IX5" - XBI?) < €5 Iy =



Optimization methods for LASSO
estimation

[mainly pointers to different approaches and literatures|

® | east Angle Regression
® Coordinate Descent

® Proximal methods



First algorithm:
Least Angle Regression (LARS)

® LARS = variant of the incremental stagewise procedure for
adding variables in a linear model

® [east Angle Regression paper by
Efron-Hastie-Johnstone-Tibshirani (AoS, 2004)

® Previous work by Osborne et al. (2000) on the so-called
homotopy method

® Also related to greedy approaches such as Orthogonal
Matching Pursuit (by Mallat, Zhang (1993), Mallat, Davis,
Zhang (1994))

* Recovers the full regularization path A — 5()) of the LASSO

® Success of the procedure based on the fact that LASSO path
is piecewise linear.

® Computational efficiency: one ordinary least square
computation at each step



Least Angle Regression:
Pseudocode

@ Start with all coefficients 3 equal to zero.
® Find the predictor x; most correlated with y
© Increase the coefficient 3; in the direction of the sign of its

correlation with y until some other predictor x, has as much
correlation with r = y — § as x; has.

@ Increase (ﬂj,ﬁk) in their joint least squares direction, until
some other predictor x,, has as much correlation with the
residual r.

@ Continue until: all predictors are in the model (corresponding
to the solution when X is small)



Second algorithm:
Coordinate Descent

® Simple idea of one dimensional optimization with cyclic
iteration over all variables, until convergence

e QOptimization at each step amounts to a one-dimensional
LASSO problem

® Solution obtained as a soft thresholding of the
one-dimensional ordinary least square estimate.




Third algorithm:
Proximal methods

® Parikh-Boyd tutorial paper (2013): "Much like Newton's
method is a standard tool for solving unconstrained smooth
optimization problems of modest size, proximal algorithms can
be viewed as an analogous tool for nonsmooth, constrained,
large-scale, or distributed versions of these problems.”

® Early work goes back to Moreau (1960s) then Nemirovski,
Yudin (1983)

® Rediscovered around 2005 with applications to signal
processing and solving certain optimization problems



Proximal method (1/4)
Principle

® Applies to a problem of the form:
min {L(5) + ¥(5)}

when: L is smooth, convex, with "bounded” gradient, and ¢
is continuous, convex, but non-smooth

® The proximal algorithm is a descent algorithm which provides
a sequence 3; obtained as follows: at each step t,

B = prox(w, Bt-1— VL(/Bt—l))

where prox is the so-called proximal operator (generalizes the
concept of orthogonal projection)



Proximal method (2/4)
Definition of proximal operator

® Definition of the proximal operator for the nonsmooth term
of the objective L + v

prox(v. 2) = argmin { 18— 1+ u(3)

® |nterpretation: The proximal operator finds a point that
corresponds to a trade-off between minimizing 1) and being
near to the point z.



Proximal method (3/4)
Application to LASSO

® Here: L(8) = 3[1XB — yl[5 and ¥(8) = Al|B]lx
® Gradient step relies on the gradient of the smooth term L:
VL(B) = XT(XB - y)
® Proximal operator for the ¢; norm is given by:
prox(All - l1,2) = (z = A+ = (~2 = A)y

(soft thresholding operator on each component of z)

e Also called ISTA (for Iterative Shrinkage Thresholding
Algorithm)



Proximal methods (4/4)
Discussion

® Special cases: gradient descent, projected gradient

® Accelerated version: FISTA for Fast Iterative Shrinkage
Thresholding Algorithm

® Numerical convergence: from O(1/t) to O(1/t?)



B. Feature Learning: PCA and variants



What all students should know
PCA

® Motivation: Dimensionality reduction

® Principle: Find an orthogonal basis to represent (project on)
the data, which captures the directions of highest dispersion
(variance) of the data

® Underlying assumption: Gaussian, highly correlated data



Idea Of PCA
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PCA
Classical construction

Compute the covariance (or correlation) matrix of the data
Find the eigen-elements (values/vectors) - eigenvectors being
orthogonal - of this matrix

Principal components are ordered from the larger eigenvalue
to the smallest

Dimensionality reduction from d to (small) r is performed by
projecting the initial data points on the first (principal) r
eigenvectors



PCA applied to music recommendation

LastFM data set
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PCA applied to time series

Job hiring data
JOLTS data set available at https://www.bls.gov/jlt/>

Job Openings and Labor Turnover: Hires data
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https://www.bls.gov/jlt/>

PCA applied to time series

Components interpretation

Principal Component 1 (normalized data)
‘Cyelical
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Principal Component 2 (normalized data)
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PCA applied to time series
Job hiring data

Projection on principal components
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PCA applied to time series
Financial data (1/2)

Paper by Avellenada and Lee (2008)
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Figure 1: Eigenvalues of the correlation matrix of market returns computed
on May 1 2007 estimated using a 1-year window (measured as percentage of
explained variance)



PCA applied to time series
Financial data (2/2)

Paper by Avellenada and Lee (2008)

First eigenvector

Figure 4: First eigenvector sorted by coefficient size. The x-axis shows the ETF
corresponding to the industry sector of each stock.



A different view on PCA

® Denote by X the data matrix of size d x n (assume that the
points are centered) and by | M||2 = Y I\/I,-? the square of
the Frobenius norm of the matrix M = (M;;);;

® Solve the minimization problem:

min | X — PZ||% subject to PTP =1,

where P is the projection matrix of size d x r (the matrix
whose columns are the first r eigenvectors), and Z is r x n
matrix of the projected points in the r-dimensional subspace.
We also have the orthogonality constraint PTP = I,
(eigenvectors are orthogonal)



A low-rank formulation of PCA

® An alternative formulation to the previous optimization
problem, by setting: A= PZ, is:

mAn | X — Al|% subject to rank(A) = r

® Theoretical result (Vidal, Ma, Sastry (2016)): an optimal
solution to this problem is given by:

A=UZX,V,

where U, and V, have orthogonal columns of size d x r and
n x r respectively, ¥, diagonal square matrix of size r x r.
The matrices U,, ¥,, V, correspond to the reduced singular
value decomposition (SVD) of matrix X.



Some linear algebra background:
SVD decomposition

A generalization of eigenvalues and eigenvectors.

® Definition: o is a singular value of a rectangular d x n matrix
X if there exist unit two vectors u € R? and v € R” such that

XTu=ov and Xv =ou
The vectors u and v are called singular vectors.

® Theorem: For any rectangular matrix, there exist U and V
orthogonal matrices of size d x d and n x n respectively and a
diagonal matrix ¥ of size d X n such that:

X=UuzVv’



Some issues with PCA

e PCA is sensitive to outliers; empirical covariance matrix
converges to real covariance slowly wrt sample size...

® What if natural components are not Gaussian? what if they
are not orthogonal but independent (check more than just
their correlation)? ...

® What about interpretation? Maybe we need nonnegativity of
matrix Z (the new data representation) — Nonnegative
Matrix Factorization



Nonnegative Matrix Factorization
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D.D. Lee and H. S.Seung, " Learning the parts of objects by non-negative
matrix factorization”, Nature 401 (6755), pp. 788-791, 1999



PCA Generalisations:
Example Machine Learning Formulation

Example: Robust PCA by Candes, Li, Ma, Wright (2011)

Motivation: assume a decomposition of the data matrix
X = L+ S where L is low rank and S is sparse.

Principal Component Pursuit: the nuclear norm (also called

Trace norm) || - ||« defined as the sum of singular values; note
with || - ||1 the ¢1 matrix norm (sum of the absolute values of
all the entries of the matrix). We search for matrices L and S:

min [|Ll. + A[|S[|x subject to L+ S = X

Main theoretical result: under some assumptions the exact
solution may be recovered by this procedure



Other variants of PCA

® Sparse PCA
® Nonlinear PCA, Kernel PCA

Reference: book by Vidal, Ma, Sastry. Generalized Principal
Component Analysis. Springer (2016)



C. Applications: matrix completion, compressed
sensing
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Matrix completion:
Problem statement

Original optimization formulation (kind of "lvanov
Regularization” with no error on the available matrix entries -
our data)

m)in{rank(X)} subject to Xjj = Mj; ,V(i,j) € Q

where Q = {(/,/) : Mj; the available data}.

Key Challenge: Non-convex problem, hard to solve



Matrix completion:
Convex Relaxation

min(n,m)
® Recall the nuclear norm of X is || X||. = Z oi, where o;
i=1
are the singular values of X (recall the SVD of X is
X =UzVT)

® Convex formulation of the matrix completion problem:

m)in | X[« subject to X = My ,V(i,j) € Q

where Q = {(/,) : Mj; the available data}.

® Regularization formulation: Nuclear norm penalty

)1 )
min 4 5 2 (5 = M) + XL
jeQ



Matrix completion
Solution (1/2)

e Simplified problem (no mask Q):
i { 31X = M1 + 211 }
X (2
® The solution is closed form and given by:
shrink(X, \) = UX(\) VT

where ¥(\) = diag((o; — X))
® Note: the solution uses only the singular values that are larger
than A...



Matrix completion
Solution (2/2)

Need a trick to deal with the Q
Use an auxiliary matrix Y which is complete

Define Mq(X) the matrix with coefficients Xj; if (i,/) € Q and
zero if (i,j) ¢ Q

Iterative algorithm (called "SVT"):

@ Set A > 0 and sequence of step sizes (dk)k>1
@® Start with Yy = 0 matrix of size n x m
© At each step k, compute:

Xk = Shrink( Yk—la )\)
Yi = Yio1+ oNo(M— Xy)



C2. Dictionary learning



Motivations and references

® Some features (to represent the data) may be good for
compression but not for interpretation (and vice versa); they
may also simply fail to "lead to" sparse representations (e.g.,
learn functions that use only a few of the features)

e Can we learn data features (representation) so that the
functions we learn (estimate) in that representation ("space”)
are also sparse?

® |dea is to exploit the fact that similar patterns may be
repeated in the data (even if they are not smooth)

¢ (Can also be used to handle some cases of non-stationarity)

References: Olshausen and Field (1997) Kreutz-Delgado et al. (2003), Mairal, Elad, Sapiro (2008), Gribonval et al.
(2015)



Sparse coding
Formulation

® Objective: find both A (the "features”) and Y that yield to
the sparse representation of the data X up to some error ¢

® Formulation:

. : : _ <
min {; HY,HO} subject to || X —AY|2<e



Sparse coding
Towards nonconvex optimization

® Same complexity as o norm minimization problem. In
practice, it is solved with an /1-type relaxation

e But: for fixed A, minimization over Y is convex but the joint
optimization wrt both A and Y is not convex

® Main strategy for non convex matrix factorization problems:
alternating minimization (Douglas-Rachford) or Block
coordinate descent



Sparse coding: Examples

® Images (text? multimedia?, etc)
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® Representation of consumer products (" meta-attributes”) and
utility functions (see also conjoint analysis and Multi-task
Learning in Sessions 13-14).
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Sparsity

C.3. Compressed sensing



A revolution in signal processing

Classical signal representation relies on first measuring then
compressing (the information/data - hence "finding the
rules/laws” )

Take-home message: Sparsity and regularization are the keys
for extreme compression

Technological breakthroughs have been achieved in imaging
such as the "one-pixel camera”

Pioneering work by Candés-Romberg-Tao (2006) and Donoho
(2006)



Compressed Sensing
Setup

® Want to recover the signal y € RY based on few
measurements x; = z,-Ty fori=1,...,n with n < d where z
are random "directions” .

® Assumption: the signal y has a sparse linear representation,
meaning that there exists a sparse vector 8 such that y = Vg3
where W is the matrix of basis vectors.



Compressed Sensing
Optimization problem

® Compressed sensing can then be formulated as a linear
program wrt [3:

min ||3]|1 subject to X = ZVj
BERY
where the vector X € R” contains the observations, and the

two matrices Z (design matrix of size n x d) and W (square
matrix d x d, basis of RY) are fixed and known.

e Eventually, the signal is recovered (de-compressed) thanks to
the relation y = Vz.

Remark: there is a family of procedures depending on the choice of the design matrix (usually random matrix with
gaussian or Rademacher entries).



Wrap-up and other topics

Representation learning aims at extracting structure from
complex low-level data

Practical methods rely on high dimensional statistical
modeling, linear algebra and optimization formulations
inspired from machine learning techniques

Dictionary learning is an example of unsupervised learning task

Other unsupervised learning problems are:

® Clustering (or segmentation or unsupervised classification)
® Anomaly detection
® Novelty detection
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