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What we have seen so far

• Machine Learning is about learning (= choosing =
estimating) a function from data

• The key concept is the complexity of the function space
(”hypothesis space”) where we look for our solution (”how
many functions we select from”)

• The art of learning is to use the data to adjust the complexity
of the hypothesis space - while implicitly considering the
approximation error.

• In the particular case of least square linear regression,
complexity calibration can (also) be achieved by only selecting
and using a small subset of the variables (the problem of
variable selection).



Another ”Big picture” of Learning



Objectives for this class

• Focus on feature selection and feature learning: learning
(”finding” or ”choosing”) a representation of the data

(Theory so far: focused on learning functions for prediction and on

bounding their generalization/prediction error for a given set of

features (”representation”))

• Today: Develop new regularisation/machine learning
formulations for other applications such as learning (=
estimating the missing entries of) matrices - for example used
in recommender systems

• Also: We will learn about some optimization approaches to
solve machine learning formulations/methods (possibly
nonconvex optimization problems): Optimization is central
for machine learning



A primer on parsity

• Sparsity-inducing regression methods: LASSO

• Motivation in linear predictive models: relaxation of ℓ0
constraint on number of independent variables used, namely
from minimizing

∥Y − Xβ∥2 + λ∥β∥0

to minimizing
∥Y − Xβ∥2 + λ∥β∥1

• Advantages: tractable computations, interpretable models

• Byproduct: sparsistency (i.e. how many, and which variables
to use)



Application (today): Matrix completion
with (rank) Sparsity

(”Netflix Recommendation Competition”)



Application (today): Matrix completion
with (rank) Sparsity

(”Netflix Recommendation Competition”)

• Given a matrix M with missing values, find the matrix X with
minimal rank (why? - see later today) which coincides with
the available coefficients of M:

min
X

{rank(X )} subject to Xij = Mij ,∀(i , j) ∈ Ω

where Ω = {(i , j) : Mij not missing}.

• How to solve this difficult optimization problem? Why is it
difficult?



Sparse Feature Selection and Learning

A. Feature Selection: LASSO with optimization methods
B. Feature Learning: PCA and variants
C. Applications: matrix completion, sparse coding, compressed
sensing



A. Feature selection: LASSO with optimization
methods



The LASSO for linear models
From ℓ0 to ℓ1

• Consider the LASSO estimation (learning) method: for any
λ > 0,

β̂λ ∈ argmin
β∈Rd

{
∥Y − Xβ∥2 + λ∥β∥1

}
where the ℓ1-norm is:

∥β∥1 =
d∑

j=1

|βj |



Blessings of the LASSO

• Approximate solutions via efficient algorithms building the
so-called regularization path (find for all values of λ the β̂(λ)):

• Theoretical soundness: it can be shown that (if the real model
is linear): as n, d → ∞

1

n
E
(
∥Xβ∗ − Xβ̂∥2

)
≤ C∥β∗∥1

√
log d

n



Optimization methods for LASSO
estimation

[mainly pointers to different approaches and literatures]

• Least Angle Regression

• Coordinate Descent

• Proximal methods



First algorithm:
Least Angle Regression (LARS)

• LARS = variant of the incremental stagewise procedure for
adding variables in a linear model

• Least Angle Regression paper by
Efron-Hastie-Johnstone-Tibshirani (AoS, 2004)

• Previous work by Osborne et al. (2000) on the so-called
homotopy method

• Also related to greedy approaches such as Orthogonal
Matching Pursuit (by Mallat, Zhang (1993), Mallat, Davis,
Zhang (1994))

• Recovers the full regularization path λ→ β̂(λ) of the LASSO

• Success of the procedure based on the fact that LASSO path
is piecewise linear.

• Computational efficiency: one ordinary least square
computation at each step



Least Angle Regression:
Pseudocode

1 Start with all coefficients β equal to zero.

2 Find the predictor xj most correlated with y

3 Increase the coefficient βj in the direction of the sign of its
correlation with y until some other predictor xk has as much
correlation with r = y − ŷ as xj has.

4 Increase (βj ,βk) in their joint least squares direction, until
some other predictor xm has as much correlation with the
residual r .

5 Continue until: all predictors are in the model (corresponding
to the solution when λ is small)



Second algorithm:
Coordinate Descent

• Simple idea of one dimensional optimization with cyclic
iteration over all variables, until convergence

• Optimization at each step amounts to a one-dimensional
LASSO problem

• Solution obtained as a soft thresholding of the
one-dimensional ordinary least square estimate.



Third algorithm:
Proximal methods

• Parikh-Boyd tutorial paper (2013): ”Much like Newton’s
method is a standard tool for solving unconstrained smooth
optimization problems of modest size, proximal algorithms can
be viewed as an analogous tool for nonsmooth, constrained,
large-scale, or distributed versions of these problems.”

• Early work goes back to Moreau (1960s) then Nemirovski,
Yudin (1983)

• Rediscovered around 2005 with applications to signal
processing and solving certain optimization problems



Proximal method (1/4)
Principle

• Applies to a problem of the form:

min
β

{L(β) + ψ(β)}

when: L is smooth, convex, with ”bounded” gradient, and ψ
is continuous, convex, but non-smooth

• The proximal algorithm is a descent algorithm which provides
a sequence βt obtained as follows: at each step t,

βt = prox
(
ψ, βt−1 −∇L(βt−1)

)
where prox is the so-called proximal operator (generalizes the
concept of orthogonal projection)



Proximal method (2/4)
Definition of proximal operator

• Definition of the proximal operator for the nonsmooth term ψ
of the objective L+ ψ

prox
(
ψ, z

)
= argmin

β

{
1

2
∥β − z∥22 + ψ(β)

}
• Interpretation: The proximal operator finds a point that
corresponds to a trade-off between minimizing ψ and being
near to the point z .



Proximal method (3/4)
Application to LASSO

• Here: L(β) = 1
2∥Xβ − y∥22 and ψ(β) = λ∥β∥1

• Gradient step relies on the gradient of the smooth term L:

∇L(β) = XT (Xβ − y)

• Proximal operator for the ℓ1 norm is given by:

prox
(
λ∥ · ∥1, z

)
= (z − λ)+ − (−z − λ)+

(soft thresholding operator on each component of z)

• Also called ISTA (for Iterative Shrinkage Thresholding
Algorithm)



Proximal methods (4/4)
Discussion

• Special cases: gradient descent, projected gradient

• Accelerated version: FISTA for Fast Iterative Shrinkage
Thresholding Algorithm

• Numerical convergence: from O(1/t) to O(1/t2)



B. Feature Learning: PCA and variants



What all students should know
PCA

• Motivation: Dimensionality reduction

• Principle: Find an orthogonal basis to represent (project on)
the data, which captures the directions of highest dispersion
(variance) of the data

• Underlying assumption: Gaussian, highly correlated data



Idea of PCA



PCA
Classical construction

• Compute the covariance (or correlation) matrix of the data

• Find the eigen-elements (values/vectors) - eigenvectors being
orthogonal - of this matrix

• Principal components are ordered from the larger eigenvalue
to the smallest

• Dimensionality reduction from d to (small) r is performed by
projecting the initial data points on the first (principal) r
eigenvectors



PCA applied to music recommendation

LastFM data set



PCA applied to time series
Job hiring data

JOLTS data set available at https://www.bls.gov/jlt/>

https://www.bls.gov/jlt/>


PCA applied to time series
Job hiring data

Components interpretation



PCA applied to time series
Job hiring data

Projection on principal components



PCA applied to time series
Financial data (1/2)

Paper by Avellenada and Lee (2008)



PCA applied to time series
Financial data (2/2)

Paper by Avellenada and Lee (2008)



A different view on PCA

• Denote by X the data matrix of size d × n (assume that the
points are centered) and by ∥M∥2F =

∑
i ,j M

2
ij the square of

the Frobenius norm of the matrix M = (Mij)ij

• Solve the minimization problem:

min
P,Z

∥X − PZ∥2F subject to PTP = Ir

where P is the projection matrix of size d × r (the matrix
whose columns are the first r eigenvectors), and Z is r × n
matrix of the projected points in the r -dimensional subspace.
We also have the orthogonality constraint PTP = Ir
(eigenvectors are orthogonal)



A low-rank formulation of PCA

• An alternative formulation to the previous optimization
problem, by setting: A = PZ , is:

min
A

∥X − A∥2F subject to rank(A) = r

• Theoretical result (Vidal, Ma, Sastry (2016)): an optimal
solution to this problem is given by:

A = UrΣrVr

where Ur and Vr have orthogonal columns of size d × r and
n × r respectively, Σr diagonal square matrix of size r × r .
The matrices Ur , Σr , Vr correspond to the reduced singular
value decomposition (SVD) of matrix X .



Some linear algebra background:
SVD decomposition

A generalization of eigenvalues and eigenvectors.

• Definition: σ is a singular value of a rectangular d × n matrix
X if there exist unit two vectors u ∈ Rd and v ∈ Rn such that

XTu = σv and Xv = σu

The vectors u and v are called singular vectors.

• Theorem: For any rectangular matrix, there exist U and V
orthogonal matrices of size d × d and n× n respectively and a
diagonal matrix Σ of size d × n such that:

X = UΣV T



Some issues with PCA

• PCA is sensitive to outliers; empirical covariance matrix
converges to real covariance slowly wrt sample size...

• What if natural components are not Gaussian? what if they
are not orthogonal but independent (check more than just
their correlation)? ...

• What about interpretation? Maybe we need nonnegativity of
matrix Z (the new data representation) → Nonnegative
Matrix Factorization



Nonnegative Matrix Factorization

D.D. Lee and H. S.Seung, ”Learning the parts of objects by non-negative
matrix factorization”, Nature 401 (6755), pp. 788–791, 1999



PCA Generalisations:
Example Machine Learning Formulation

• Example: Robust PCA by Candès, Li, Ma, Wright (2011)

• Motivation: assume a decomposition of the data matrix
X = L+ S where L is low rank and S is sparse.

• Principal Component Pursuit: the nuclear norm (also called
Trace norm) ∥ · ∥∗ defined as the sum of singular values; note
with ∥ · ∥1 the ℓ1 matrix norm (sum of the absolute values of
all the entries of the matrix). We search for matrices L and S :

min
L,S

∥L∥∗ + λ∥S∥1 subject to L+ S = X

• Main theoretical result: under some assumptions the exact
solution may be recovered by this procedure



Other variants of PCA

• Sparse PCA

• Nonlinear PCA, Kernel PCA

• ...

Reference: book by Vidal, Ma, Sastry. Generalized Principal
Component Analysis. Springer (2016)



C. Applications: matrix completion, compressed
sensing



Matrix completion:
Recommender Systems Application



Matrix completion:
Problem statement

• Original optimization formulation (kind of ”Ivanov
Regularization” with no error on the available matrix entries -
our data)

min
X

{rank(X )} subject to Xij = Mij ,∀(i , j) ∈ Ω

where Ω = {(i , j) : Mij the available data}.

• Key Challenge: Non-convex problem, hard to solve



Matrix completion:
Convex Relaxation

• Recall the nuclear norm of X is ∥X∥∗ =
min(n,m)∑

i=1

σi , where σi

are the singular values of X (recall the SVD of X is
X = UΣV T )

• Convex formulation of the matrix completion problem:

min
X

∥X∥∗ subject to Xij = Mij ,∀(i , j) ∈ Ω

where Ω = {(i , j) : Mij the available data}.

• Regularization formulation: Nuclear norm penalty

min
X

1

2

∑
ij∈Ω

(Xij −Mij)
2 + λ∥X∥∗





Matrix completion
Solution (1/2)

• Simplified problem (no mask Ω):

min
X

{
1

2
∥X −M∥2 + λ∥X∥∗

}
• The solution is closed form and given by:

shrink(X , λ) = UΣ(λ)V T

where Σ(λ) = diag((σi − λ)+)

• Note: the solution uses only the singular values that are larger
than λ...



Matrix completion
Solution (2/2)

• Need a trick to deal with the Ω

• Use an auxiliary matrix Y which is complete

• Define ΠΩ(X ) the matrix with coefficients Xij if (i , j) ∈ Ω and
zero if (i , j) /∈ Ω

• Iterative algorithm (called ”SVT”):

1 Set λ > 0 and sequence of step sizes (δk)k≥1

2 Start with Y0 = 0 matrix of size n ×m
3 At each step k, compute:{

Xk = shrink(Yk−1, λ)
Yk = Yk−1 + δkΠΩ(M − Xk)



C2. Dictionary learning



Motivations and references

• Some features (to represent the data) may be good for
compression but not for interpretation (and vice versa); they
may also simply fail to ”lead to” sparse representations (e.g.,
learn functions that use only a few of the features)

• Can we learn data features (representation) so that the
functions we learn (estimate) in that representation (”space”)
are also sparse?

• Idea is to exploit the fact that similar patterns may be
repeated in the data (even if they are not smooth)

• (Can also be used to handle some cases of non-stationarity)

References: Olshausen and Field (1997) Kreutz-Delgado et al. (2003), Mairal, Elad, Sapiro (2008), Gribonval et al.
(2015)



Sparse coding
Formulation

• Objective: find both A (the ”features”) and Y that yield to
the sparse representation of the data X up to some error ε

• Formulation:

min
A,Y

{
n∑

i=1

∥Yi∥0

}
subject to ∥X − AY ∥2 ≤ ε



Sparse coding
Towards nonconvex optimization

• Same complexity as ℓ0 norm minimization problem. In
practice, it is solved with an ℓ1-type relaxation

• But: for fixed A, minimization over Y is convex but the joint
optimization wrt both A and Y is not convex

• Main strategy for non convex matrix factorization problems:
alternating minimization (Douglas-Rachford) or Block
coordinate descent



Sparse coding: Examples

• Images (text? multimedia?, etc)

• Representation of consumer products (”meta-attributes”) and
utility functions (see also conjoint analysis and Multi-task
Learning in Sessions 13-14).



Sparsity
C.3. Compressed sensing



A revolution in signal processing

• Classical signal representation relies on first measuring then
compressing (the information/data - hence ”finding the
rules/laws”)

• Take-home message: Sparsity and regularization are the keys
for extreme compression

• Technological breakthroughs have been achieved in imaging
such as the ”one-pixel camera”

• Pioneering work by Candès-Romberg-Tao (2006) and Donoho
(2006)



Compressed Sensing
Setup

• Want to recover the signal y ∈ Rd based on few
measurements xi = zTi y for i = 1, . . . , n with n ≪ d where zi
are random ”directions”.

• Assumption: the signal y has a sparse linear representation,
meaning that there exists a sparse vector β such that y = Ψβ
where Ψ is the matrix of basis vectors.



Compressed Sensing
Optimization problem

• Compressed sensing can then be formulated as a linear
program wrt β:

min
β∈Rd

∥β∥1 subject to X = ZΨβ

where the vector X ∈ Rn contains the observations, and the
two matrices Z (design matrix of size n × d) and Ψ (square
matrix d × d , basis of Rd) are fixed and known.

• Eventually, the signal is recovered (de-compressed) thanks to
the relation y = Ψβ.

Remark: there is a family of procedures depending on the choice of the design matrix (usually random matrix with
gaussian or Rademacher entries).



Wrap-up and other topics

• Representation learning aims at extracting structure from
complex low-level data

• Practical methods rely on high dimensional statistical
modeling, linear algebra and optimization formulations
inspired from machine learning techniques

• Dictionary learning is an example of unsupervised learning task

• Other unsupervised learning problems are:
• Clustering (or segmentation or unsupervised classification)
• Anomaly detection
• Novelty detection
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