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Introduction du cours



Data science : information, pipelines,
decisions

• Why ? Information –> Data –> Predictions, decisions,
knowledge...

• How ? Building pipelines from sensors to decisions

• For whom ? For humans ! with Humans in the loop (or not...)



The three pillars of data science

1 Hardware : sensors, computing power, telecommunications,
interfaces

2 Software environments : for design, testing and operations

3 Mathematical modeling and algorithms : high dimensional
statistics, dimension reduction, machine learning, network
science, time series, etc.



Types of Machine Learning problems



Symbolic AI vs. Machine Learning



The goal of machine learning

Finding a function

• Example : Pedestrian detection from video cameras

• What is the search space for such a function ?



The art of machine learning

Solving the "bias-variance" trade-off

• Distance between solution provided by a learning method and
the optimal solution (function) : sum of Approximation error
and Estimation error

• Learning a function amounts to :
(a) chosing a search space (design process),
(b) estimating the best function in this space (training process).



The three families of ML algorithms

1 Local methods : based on grouping and local voting (or
averaging)

• k-Nearest-Neighbors
• Kernel rules
• Decision trees

2 Global methods : based on functional optimization
• Regularized regression (Ridge, LASSO...)
• Support Vector Machines
• Boosting
• Feedforward neural networks

3 Ensemble methods : based on resampling and aggregation
• Bagging
• Boosting
• Random forests



Shallow vs. Deep Learning

• Shallow learning : often relates to Tikhonov’s regularization

min
h∈H

(
1
n

n∑
i=1

ℓ(h(Xi ),Yi ) + λn · pen(h, n)

)

• The penalty controls the variance term (Occam’s razzor)
• It may also induce a desired structure of the function (e.g.

sparsity).

• Deep Learning :

• Universal approximators (zero bias)
• No penalty term in the optimization but lots of tricks in the

implementation which amount to implicit regularization



The various frameworks of Machine
Learning



Machine Learning in the real world
A full pipeline for data processing

• data collection and indexing
• modeling,
• preprocessing (data quality, filtering and information

compression)
• training,
• evaluation,
• monitoring,
• capitalization
• learning-to-learn



This course !

• Data points are vectors in Rd

• Setup : supervised, some unsupervised
• Problems : classification, (scoring), regression, dimension

reduction, clustering
• Focus on : a) problem setup, b) performance assessment, c)

algorithms, d) principles and best-practice



Supervised Machine Learning
Learning and information
The bias-variance trade-off
Empirical Risk Minimization



Supervised Machine Learning
Learning and information



Learning like the twenty-question game

• Assume Nature has picked one function among K and we want
to reveal this function

• Assume we have an oracle answering YES or NO when we ask
a question about this function

• What is the optimal number n of questions to ask to find the
unknown function ?



Brute force learning
Finite case

• ISSUE : How many questions with answers YES or NO one has
to ask the oracle to find THE function among K functions ?

• STRATEGY : Proceed recursively by splitting the set of
functions in two groups and asking whether THE function is
the first group and removing the group which does not contain
the function. This leads to the identification of the desired
function with about logK questions.

• ANSWER : Number of questions n =

⌈
logK

log 2

⌉
= ⌈log2 K⌉

• NB : this quantity represents the number of bits of information
characterizing the function in the set of K functions



Shannon’s Information theory
The origin of the logK

• Number of bits to encode a collection of K functions where
each function can occur with probability P(k)

• Entropy of a distribution P in information theory :

H(P) = −
K∑

k=1

P(k) log2 P(k) ≤ log2 K



From questions to data

a. Exhaustive search in the zero-error case
b. PAC learning in the zero-error case
c. PAC learning in the general case

PAC = Probably Approximately Correct

L. Valiant (1984). A theory of the learnable. Communications of the ACM.



From questions to data
a. Zero error case (1/2)

• Notations : Domain space X and label space Y = {0, 1}

• Zero-error setup : Consider a finite set of indicator functions

fk : X → {0, 1}, k = 1, . . . ,K

and a collection of data points (xi , yi ) such that there always
exists some k for which yi = fk(xi ), for any index i

• Worst case scenario : the collection of data points xi ∈ X is
such that the cardinality of the set of vectors
{(f1(xi ), . . . , fK (xi )) : i ≥ 1} is maximal and equal to 2K



From questions to data
a. Zero error case (2/2)

• ISSUE : How many examples (xi , yi ) ∈ X × {0, 1} to find the
unknown indicator function among K possible indicator
functions fk : X → {0, 1}, k = 1, . . . ,K ?

• SAME ANSWER : Number of examples n =

⌈
logK

log 2

⌉
• STRATEGY : One has to find a vector xi such that half of the

functions take value 1 and the other half take value 0 and ask
the oracle whether the desired function takes value 1 or 0 on
this vector and discard those functions taking the opposite
value. Apply this n times.



From questions to data
b. PAC in the zero-error case

• REMARK : it may be hard to find such an xi which splits
every subset of functions into two equal parts.

• SAMPLING : Assume X1, . . . ,Xn is an IID sample
• QUESTION : In the zero-error setup, how many examples
(Xi ,Yi ) are required to find among a finite collection of
indicator functions f : X → {0, 1} the one whose error
probability is ε-close to zero with probability 1 − δ ?

• ANSWER : Number of examples

n =

⌈
logK + log(1/δ)

ε

⌉
(Proof left as an exercise)



From questions to data
c. PAC in the general case

• ASSUME : among K functions, NONE of them commits zero
error on the sample {(Xi ,Yi ) : i ≥ 1}.

• SAME ISSUE AS BEFORE
• ANSWER : Number of examples on average

n =

⌈
logK + log(1/δ)

2ε2

⌉
Same dependency on K , the only change is in the constant.



PAC bound - General case
Sketch of proof

• Hoeffding’s inequality :

• Consider Z1, . . . ,Zn IID over [0, 1] and Z n =
1
n

n∑
i=1

Zi

• We have, for any t > 0

P{Z n − E(Z1) > ε} ≤ exp(−2nε2)

• Union bound : For any two measurable sets A, B , we have :

P{A ∪ B} ≤ P{A}+ P{B}



Questions raised

• Proof arguments for PAC learnability (finite case)
• PAC : From finite to infinite collection of functions
• From "strategies" to "learning algorithms"
• What is lost through random sampling ? the sample may not

contain the optimal set of "questions"....



Supervised Machine Learning
The bias-variance decomposition in Machine Learning



General setup
Notations

• Goal of learning : an optimal decision function h∗ : X → Y
X : domain set, Y : label set

• Input of learning :
• Training data : a set of labeled data

Dn = {(X1,Y1), . . . , (Xn,Yn)}

of size n, where the (X ,Y )’s are in X × Y
• Hypothesis space : a collection H of candidate decision

functions h : X → Y

• Output of learning : an empirical decision function ĥ in the
hypothesis space H estimated from training data Dn

• Reference in H : the best decision function h̄ in the class (the
more data, the closer ĥ to h̄)



The key trade-off in Machine Learning

• Denote by L(h) the error measure for any decision function h

• We have : L(h̄) = inf
H

L , and L(h∗) = inf L

• Bias-Variance type decomposition of error for any output ĥ :

L(ĥ)− L(h∗) = L(ĥ)− L(h̄)︸ ︷︷ ︸
estimation (stochastic)

+ L(h̄)− L(h∗)︸ ︷︷ ︸
approximation (deterministic)



About approximation error

• Cybenko (1989) - Denseness result in the spirit of
Stone-Weierstrass showing that any linear combination of
compositions of sigmoid with linear functions is dense wrt the
supremum norm in the space of continuous functions over the
d-dimensional unit cube.

• Barron (1994) - Approximation error bound involves a
parameter quantifying the smoothness of the target function.

• Status of this question in the regression setup :
• For kernel machines : a full theory is available thanks to Smale

(2003), Steinwart (2008).
• For deep learning : recent work by Grohs, Perekrestenko,

Elbrächter, and Bölcskei (2019) .
• In the classification setup, tough problem, still open issue...



What all students (should) know
The bias-variance trade-off in statistical inference



The case of parametric estimation

• Θ is a parameter set, subset of Rp

• Pθ with θ ∈ Θ is a parametric class of distributions
• Pθ∗ is the true distribution of the data for some θ∗ ∈ Θ

(assumption)
• θ̂n is an estimator of θ∗ based on a sample of size n

• Mean-squared error decomposition :

E
(
∥θ̂n − θ∗∥2

)
=

E
((

(θ̂n − E(θ̂n))(θ̂n − E(θ̂n))T
))

+ ∥E(θ̂n)− θ∗∥2

Exercise : compute MSE in the case of OLS in regression and ridge regression.



The case of prediction error in ML

• Observations : scalar Y , d-dimensional covariate vectors X

• Regression model : Y = h∗(X ) + ε

• Random noise : ε independent of X
• Sample-based predictor ĥn
• Mean-squared error at a fixed point (x , y) :

En

(
(y − ĥn(x))

2
)
=
(
En(ĥn(x))− h∗(x)

)2
+ Vn

(
ĥn(x)

)
+ ε2

(En,Vn : expectation and variance wrt training sample)

MSE = Squared-bias term + Variance of predictions + Bayes error



The case of linear models

• True model : h∗(x) = xT θ∗,for some θ∗ ∈ Rd

• Linear models : h(x) = xT θ, where θ ∈ Rd

• Matrix/vector notations : X ∈ Rn×d , Y ∈ Rd , ε ∈ Rn

• Assumption : X is of full rank
• MLE : θ̂MLE

n = (XTX)−1XTY
• Plugin predictor : ĥn(x) = xT θ̂MLE

n

• Computations : for fixed (x , y)

• Bias term : xTEn(θ̂
MLE
n − θ∗) = 0

• Variance term : En

(
(xT (XTX)−1XTε)2

)
What theory says : By Gauss-Markov theorem, MLE is the lowest variance
unbiased estimator... but not necessarily the one with minimal MSE.



Variance computation
Gaussian model

• Assumption : ε ∼ Nn(0, σ2In) n-dimensional multivariate
gaussian

• Variance term : for any x

Ey |xVn

(
xT θ̂n

)
= Ey |xEn

(
(xT (XTX)−1XTε)2

)
= xTEn

(
(XTX)−1XTEy |x(εε

T )X((XTX)−1)T x
)

= σ2xTEn

(
(XTX)−1) x

• Assumption : random design x , xi ∼ N (0, 1) IID

• ExEy |xVn

(
xT θ̂n

)
= σ2 · d

n
General argument relies on Cochran’s theorem (gaussian case).



Explanation of the d/n term

Property on the norm of projections of gaussian random vectors :

• Assume Z is a gaussian random vector Nn(0, In) in Rn, H is a
linear subspace of Rn and Π : Rn → Rn a linear projection
onto H

• Then : the random vector ΠHZ has gaussian distribution
Nn(0,Π) on Rn (linear transformation of a gaussian is a
gaussian)

• Furthermore : ∥ΠZ∥2 follows a chi-square distribution with

E(∥ΠZ∥2) = dim(H)



From gaussian linear regression to ML

• What if d larger than n ?
• What replaces the dimension d in nonlinear models ?
• Other tasks than regression ?



Supervised Machine Learning
Empirical Risk Minimization (ERM)



The ERM principle
Definition

• Loss function : ℓ : Y × Y → [0,+∞]

• Empirical risk of a decision rule h : this is a data-dependent
functional

L̂n(h) =
1
n

n∑
i=1

ℓ(h(Xi ),Yi )

• ERM = Empirical Risk Minimization
Learning from training data amounts to solving the following
optimization problem

ĥn = arg min
h∈H

L̂n(h)

where the minimization is restricted to the hypothesis space.



The ERM principle
Main questions

1 The question of consistency : convergence of ĥn wrt the
sample size n ?

2 What is the cost incurred for using training data instead of the
actual data ?

3 What is the nature of the trade-off to calibrate the complexity
of the hypothesis space H ?



Overfitting vs. underfitting

Less is more :
• It turns out that considering all measurable functions leads to

overfitting ⇒ H has to be a restricted class !
But greed is good :

• Algorithms which have the capacity to overfit means they have
high representation power (arbitrary small approximation error)



The notion of true error

• Assumption :

(X ,Y ) is a pair of random variables with joint distribution P

• True error of a decision rule h : this is a distribution-dependent
functional

L(h) = E(ℓ(h(X ),Y )) =

∫
ℓ(h(x), y)dP(x , y)



Examples of tasks/problems

• Binary classification problem : Y takes 0-1 values

ℓ(y , y ′) = I{y ̸= y ′} and L(h) = P {h(X ) ̸= Y }

• Regression : Y takes values in R

ℓ(y , y ′) = (y − y ′)2 and L(h) = E
(
(Y − h(X ))2

)



Optimal elements, consistency and bounds

• Bayes rule h∗ and Bayes error L∗

h∗ = arg min
h

L(h) and L∗ = L(h∗)

• (Strong) Consistency of an inference principle ĥn

L(ĥn) → L∗ , almost surely

• The nonasymptotic bounds Eldorado :

L(ĥn)− L∗ ≤ U(n,H) whp



Exercise

Find optimal elements h∗ and L∗ in these two cases :

• Binary classification problem : Y takes 0-1 values

ℓ(y , y ′) = I{y ̸= y ′} and L(h) = P {h(X ) ̸= Y }

• Regression : Y takes values in R

ℓ(y , y ′) = (y − y ′)2 and L(h) = E
(
(Y − h(X ))2

)
We shall use the notations η(x) = E(Y | X = x) and use the fact
that E(Y ) = E

(
E(Y | X )

)



Estimation vs. approximation error
Extension of bias-variance decomposition

• Proof idea : Add and retrieve L̂(ĥn) , L̂(h), L(h), then use the
definition of ERM to upper bound the sum. Difference
between L and L̂ appear twice.

• We have :

L(ĥn)− L∗ ≤ 2 sup
h∈H

|L(h)− L̂n(h)|︸ ︷︷ ︸
estimation (stochastic)

+ L(h)− L∗︸ ︷︷ ︸
approximation (deterministic)



Finite hypothesis class
Generalization error bound for ERM

• Assume that the hypothesis class H of decision functions is
finite and h∗ /∈ H

• Then, we have, for any δ, with probability at least 1 − δ :

∀h ∈ H , L(h) ≤ L̂n(h) +

√
log |H|+ log

(1
δ

)
2n

• log |H| = logK → Statement in the introduction, see !



Finite hypothesis class
Sketch of proof

• Hoeffding’s inequality :

• Consider Z1, . . . ,Zn IID over [0, 1] and Z n =
1
n

n∑
i=1

Zi

• We have, for any t > 0

P{Z n − E(Z1) > ε} ≤ exp(−2nε2)

• Union bound : For any two measurable sets A, B , we have :

P{A ∪ B} ≤ P{A}+ P{B}



Next sessions

• Supervised Machine Learning
• Linear models for supervised learning (2 sessions)
• From linear to for nonlinear models (2 sessions)

• Unupervised Machine Learning
• Dimension reduction and clustering (1 session)


