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Abstract
This tutorial explains Linear Discriminant Anal-
ysis (LDA) and Quadratic Discriminant Analysis
(QDA) as two fundamental classification meth-
ods in statistical and probabilistic learning. We
start with the optimization of decision boundary
on which the posteriors are equal. Then, LDA
and QDA are derived for binary and multiple
classes. The estimation of parameters in LDA
and QDA are also covered. Then, we explain
how LDA and QDA are related to metric learn-
ing, kernel principal component analysis, Maha-
lanobis distance, logistic regression, Bayes op-
timal classifier, Gaussian naive Bayes, and like-
lihood ratio test. We also prove that LDA and
Fisher discriminant analysis are equivalent. We
finally clarify some of the theoretical concepts
with simulations we provide.

1. Introduction

Assume we have a dataset of instances {(x;,y;)}7_, with
sample size n and dimensionality ¢; € R% and y; € R. The
y;’s are the class labels. We would like to classify the space
of data using these instances. Linear Discriminant Analysis
(LDA) and Quadratic discriminant Analysis (QDA) (Fried-
man et al., 2009) are two well-known supervised classifica-
tion methods in statistical and probabilistic learning. This
paper is a tutorial for these two classifiers where the the-
ory for binary and multi-class classification are detailed.
Then, relations of LDA and QDA to metric learning, ker-
nel Principal Component Analysis (PCA), Fisher Discrim-
inant Analysis (FDA), logistic regression, Bayes optimal
classifier, Gaussian naive Bayes, and Likelihood Ratio Test
(LRT) are explained for better understanding of these two

fundamental methods. Finally, some experiments on syn-
thetic datasets are reported and analyzed for illustration.

2. Optimization for the Boundary of Classes

First suppose the data is one dimensional, x € R. As-
sume we have two classes with the Cumulative Distribu-
tion Functions (CDF) Fi(x) and Fy(z), respectively. Let
the Probability Density Functions (PDF) of these CDFs be:

filw) = a%f), )
falz) = a?f), @)

respectively.

We assume that the two classes have normal (Gaussian)
distribution which is the most common and default distri-
bution in the real-world applications. The mean of one of
the two classes is greater than the other one; we assume
#1 < po. Aninstance z € R belongs to one of these two
classes:

ifz € Cy,

N(Mlvg%)’
”““{ if 2 € Cy, 3)

N(M%U%)’

where C; and Cy denote the first and second class, respec-
tively.

For an instance x, we may have an error in estimation of
the class it belongs to. At a point, which we denote by =*,
the probability of the two classes are equal; therefore, the
point z* is on the boundary of the two classes. As we have
p1 < po, we can say p; < x* < po as shown in Fig. 1.
Therefore, if + < 2* or x > «* the instance = belongs to
the first and second class, respectively. Hence, estimating
xr < x* or x > x* to respectively belong to the second
and first class is an error in estimation of the class. This
probability of the error can be stated as:

P(error) = P(z > 2™, 2 € C1) + P(x < 2",z € C2). (4)
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Figure 1. Two Gaussian density functions where they are equal at
the point z*.

As we have P(A, B) = P(A|B) P(B), we can say:
P(error) =P(z > 2™ |x € C1) P(z € Cy)

5
+ Pz <z*|x €Cy)P(x € Cy), ®
which we want to minimize:
minimize P(error), (6)
e
by finding the best boundary of classes, i.e., x*.
According to the definition of CDF, we have:
Plx < c,z € Cy) = Fi(c),
= Pz >z2",2€(C)=1-F(z"), @)
Pz < 2™,z € C3) = Fa(z"). (8)

According to the definition of PDF, we have:
P(z € C1) = fi(x) = my, &)
P(J? € Cg) = fg(l‘) = T2, (10)

where we denote the priors f1(x) and fo(x) by 71 and 7o,
respectively.

Hence, Egs. (5) and (6) become:

minimize (1 — Fi(z%)) m + Fp(z*) mo. (11)
We take derivative for the sake of minimization:
O P(error N " s
% = —fi(@*)m + fa(a") m2 20,
i
— fl(l‘*)ﬂ'l :fg(l’*)ﬂ'g. (12)

Another way to obtain this expression is equating the pos-
terior probabilities to have the equation of the boundary of
classes:

PzeC|X=2)2PxecC|X=1). (13)

According to Bayes rule, the posterior is:
P(X =z|zeC)P(xzeh)
P(X = x)
_ fi(z)m
Yyl P(X =2|zec)m
(14)

PlzeC|X=x2)=

where |C| is the number of classes which is two here. The
fi(z) and 7y are the likelihood (class conditional) and
prior probabilities, respectively, and the denominator is the
marginal probability.

Therefore, Eq. (13) becomes:

fl(iE) 1
YL PX = x|z eC)m
set fQ(x) T2

Y PX =zlzec)m

= fi(z)m = fo(z) mo. (15)

Now let us think of data as multivariate data with dimen-
sionality d. The PDF for multivariate Gaussian distribu-
tion, & ~ N(p, X) is:

where € R, p € R is the mean, ¥ € R%*? is the
covariance matrix, and |.| is the determinant of matrix. The
7 =~ 3.14 in this equation should not be confused with the
7y, (prior) in Eq. (12) or (15). Therefore, the Eq. (12) or
(15) becomes:

1 (mfﬂl)Tzfl(mfﬂl)
CREIR - 2 )=
_ ; . (W—Nz)Tzz_l(fB—Nz)
= Ve : )=

(17)
where the distributions of the first and second class are
N(p1,X1) and N (p,, o), respectively.

3. Linear Discriminant Analysis for Binary
Classification

In Linear Discriminant Analysis (LDA), we assume that the
two classes have equal covariance matrices:

(18)
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Therefore, the Eq. (17) becomes:
1 — ="
exp (_ (—py) =
(2m)4| %] 2
1 — o) T2
_ exp (_ (x—py) %
(2m)|X| 2
(€ —py)'2"
2
(x — N2)T271
2

@ — py) + In(m)

l(m —Hl))

T

l(w—ﬂz))

2,

1

1(39 - lh))

— exp (—

2,

(ﬂc—ug))7T

= exp (—

(a) -
= (x-S

1

= (@ ) TS @ i) + In(rm),

N |

where (a) takes natural logarithm from the sides of equa-
tion.

We can simplify this term as:
(x—py) SN @ — ) = (
—z' Y lx -2y, -
(@)

- uI)E_l(w - Hl)
(S p Sy

' S e 2y -2 e, (19)

where (a) is because ' X 'y, = p] X'z as it is a
scalar and X' is symmetric so » T =1 Thus, we
have:

1
— iscTEﬂm — 2u1 12y 4 ! T e 4 In(my)

1 1
=-3 Tyt — SH2 0 Xy + pg B 4 In(mo).
Therefore, if we multiply the sides of equation by 2, we
have:

2 (E_I(Hz - Nl))Tw

(11— 1) 2 (g — o)) + 2 In(5) =0,
(20)
which is the equation of a line in the form of @ "« + b = 0.
Therefore, if we consider Gaussian distributions for the two
classes where the covariance matrices are assumed to be
equal, the decision boundary of classification is a line. Be-
cause of linearity of the decision boundary which discrimi-
nates the two classes, this method is named linear discrim-
inant analysis.
For obtaining Eq. (20), we brought the expressions to the
right side which was corresponding to the second class;
therefore, if we use 6(x) : R? — R as the left-hand-side
expression (function) in Eq. (20):

§(x) =2 (= " (py
+ (k1 —

*Ml))Tm

21
N2)TE_1(H1 o

the class of an instance x is estimated as:

S [ 1, ifé(x) <0,
C(f”)_{ 2, ifé(z) > 0. (22)

If the priors of two classes are equal, i.e., m; = 2, the Eq.
(20) becomes:

2(S 7 (1o — )
+ (g — o) 2y —

whose left-hand-side expression can be considered as §(x)
in Eq. (22).

(23)
“2) = Oa

4. Quadratic Discriminant Analysis for
Binary Classification

In Quadratic Discriminant Analysis (QDA), we relax the
assumption of equality of the covariance matrices:

¥ # B, (24)

which means the covariances are not necessarily equal (if
they are actually equal, the decision boundary will be linear
and QDA reduces to LDA).

Therefore, the Eq. (17) becomes:
_ Ty
exp (_ (T —py) X5
(2m)9| 24 | 2

1

1(5’5 - /h))

(z— py) '35 (w — uz)) .

1
NEOE R - 2

1

— 5@ = 15) " 25 (T — py) + In(m),

where (a) takes natural logarithm from the sides of equa-
tion. According to Eq. (19), we have:

_lln(|21|)_1$T21 m—*lh 10
+p{ B7 2 + In(m)
=—*1n(\22|)—196TE w—§u222 Mo
+ i By '@ + In(my).

Therefore, if we multiply the sides of equation by 2, we
have:

el (T - o) e+ 2(2 - B ) T2

_ %1
+ (11 7y — gy 25 o) +1n <|2 |> (25)
+21m(22) =0,

T
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which is in the quadratic form =" Ax + b'x+c=0.
Therefore, if we consider Gaussian distributions for the two
classes, the decision boundary of classification is quadratic.
Because of quadratic decision boundary which discrimi-
nates the two classes, this method is named quadratic dis-
criminant analysis.

For obtaining Eq. (25), we brought the expressions to the
right side which was corresponding to the second class;
therefore, if we use 6(x) : RY — R as the left-hand-side
expression (function) in Eq. (25):

S(x) =2 (B - o) e +2(23 'y — B ) T

- _ b)) s

+ (1] 31 e — g B3 o) + ln(fl 1') +21In(2),
|20 m

(26)

the class of an instance x is estimated as the Eq. (22).

If the priors of two classes are equal, i.e., m; = 72, the Eq.
(20) becomes:

T (T - o) e+ 2(2 - B ) T2
%]

+ (] BTy - g B ) + 1n(@> =0,

27)

whose left-hand-side expression can be considered as ()
in Eq. (22).

5. LDA and QDA for Multi-class
Classification

Now we consider multiple classes, which can be more than

two, indexed by k£ € {1,...,|C|}. Recall Eq. (12) or (15)

where we are using the scaled posterior, i.e., fx(x) 7. Ac-

cording to Eq. (16), we have:

Jr(x) m,
! - (w—uk-)TEF(ﬂc—u»k))7T
Ve =] 2 "

Taking natural logarithm gives:

In(fi@) ) = = 5 In(2m) — 5 ()

5@ = ) TS @ — ) + Inm).

We drop the constant term —(d/2)In(27) which is the
same for all classes (note that this term is multiplied be-
fore taking the logarithm). Thus, the scaled posterior of the
k-th class becomes:

1
Ok (x) = — 3 In(|3g])
1 (28)
— (= ) S (@ — ) + Inme).

In QDA, the class of the instance x is estimated as:

C(z) = arg max Ok (x), (29)

because it maximizes the posterior of that class. In this
expression, d(x) is Eq. (28).

In LDA, we assume that the covariance matrices of the k
classes are equal:

1= =3 =3 (30)
Therefore, the Eq. (28) becomes:

(@) = 3 (=)

1 _ 1
)T (@ )+ () = & (3
1
- inE_lw - 5;;;2_1;% + pp 27 e 4 In(m).
We drop the constant terms —(1/2)In(|X]) and

—(1/2) " X" x which are the same for all classes (note
that before taking the logarithm, the term —(1/2) In(|X|)
is multiplied and the term —(1/2) "X~ 'z is multiplied
as an exponential term). Thus, the scaled posterior of the
k-th class becomes:

1
2
In LDA, the class of the instance x is determined by Eq.
(29), where §(x) is Eq. (31), because it maximizes the
posterior of that class.

op(x) = pp = e — —pf B +n(m). (3D

In conclusion, QDA and LDA deal with maximizing the
posterior of classes but work with the likelihoods (class
conditional) and priors.

6. Estimation of Parameters in LDA and QDA

In LDA and QDA, we have several parameters which are
required in order to calculate the posteriors. These param-
eters are the means and the covariance matrices of classes
and the priors of classes.

The priors of the classes are very tricky to calculate. It is
somewhat a chicken and egg problem because we want to
know the class probabilities (priors) to estimate the class of
an instance but we do not have the priors and should esti-
mate them. Usually, the prior of the k-th class is estimated
according to the sample size of the k-th class:

Fp= b (32)

n
where nj and n are the number of training instances in the
k-th class and in total, respectively. This estimation consid-
ers Bernoulli distribution for choosing every instance out of
the overall training set to be in the k-th class.

The mean of the k-th class can be estimated using the Max-
imum Likelihood Estimation (MLE), or Method of Mo-
ments (MOM), for the mean of a Gaussian distribution:

RY> fi, = nik > i I(C(ws) = k), (33)
1=1
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where [(.) is the indicator function which is one and zero if
its condition is satisfied and not satisfied, respectively.

In QDA, the covariance matrix of the k-th class is estimated
using MLE:

n 34
L Z(ﬁcz — fiy,) (s — i) " 1(Clas) = k). 9

Or we can use the unbiased estimation of the covariance
matrix:

Rdxd 5 ik _
1 Y m -~ 35)
=1

In LDA, we assume that the covariance matrices of the
classes are equal; therefore, we use the weighted average
of the estimated covariance matrices as the common co-
variance matrix in LDA:

I S Il S
RIXd 5 5 — D ket T ik _ D he1 Mk B
— L =
Z"l":ll Ny "

where the weights are the cardinality of the classes.

;o (36)

7. LDA and QDA are Metric Learning!

Recall Eq. (28) which is the scaled posterior for the QDA.
First, assume that the covariance matrices are all equal (as
we have in LDA) and they all are the identity matrix:

p=- =3 =1, 37

which means that all the classes are assumed to be spheri-
cally distributed in the d dimensional space. After this as-
sumption, the Eq. (28) becomes:

u(@) =~ (@~ ) (@~ )+ nlmy), (39

because |I| = 1, In(1) = 0, and I~' = I. If we assume
that the priors are all equal, the term In (7 ) is constant and
can be dropped:

1

1
Op(x) = — 5(«’” — ) (= py) = —§di, (39)

where d, is the Euclidean distance from the mean of the
k-th class:

di = llz — pylle = /(@ — ) (@ — ). (40)

Thus, the QDA or LDA reduce to simple Euclidean dis-
tance from the means of classes if the covariance matri-
ces are all identity matrix and the priors are equal. Simple

decision decision decision
boundary boundary boundary
! : '
L} ' .
. N :
ol M2 | pyo M2 | M1 12
H e | [ ] [ ] N
: : :
L} . .
. N '
., . L}
. L}
: { ] e .
w . |:E CL‘ .
T = T2 m < Ty T > To

Figure 2. The QDA and LDA where the covariance matrices are
identity matrix. For equal priors, the QDA and LDA reduce
to simple classification using Euclidean distance from means of
classes. Changing the prior modifies the location of decision
boundary where even one point can be classified differently for
different priors.

distance from the mean of classes is one of the simplest
classification methods where the used metric is Euclidean
distance.

The Eq. (39) has a very interesting message. We know that
in metric Multi-Dimensional Scaling (MDS) (Cox & Cox,
2000) and kernel Principal Component Analysis (PCA), we
have (see (Ham et al., 2004) and Chapter 2 in (Strange &
Zwiggelaar, 2014)):

1
K= HDH, 41)

where D € R™*™ is the distance matrix whose elements
are the distances between the data instances, K € R"*" is
the kernel matrix over the data instances, R"*" > H :=
I — (1/n)117 is the centering matrix, and R” > 1 :=
[1,1,...,1]T. If the elements of the distance matrix D are
obtained using Euclidean distance, the MDS is equivalent
to Principal Component Analysis (PCA) (Jolliffe, 2011).

Comparing Eqs. (39) and (41) shows an interesting con-
nection between the posterior of a class in QDA and the
kernel over the the data instances of the class. In this com-
parison, the Eq. (41) should be considered for a class and
not the entire data, so K € R®*": [ ¢ R"™=X"k and
H € R">"k,

Now, consider the case where still the covariance matrices
are all identity matrix but the priors are not equal. In this
case, we have Eq. (38). If we take an exponential (in-
verse of logarithm) from this expression, the m; becomes
a scale factor (weight). This means that we still are using
distance metric to measure the distance of an instance from
the means of classes but we are scaling the distances by the
priors of classes. If a class happens more, i.e., its prior is
larger, it must have a larger posterior so we reduce the dis-
tance from the mean of its class. In other words, we move
the decision boundary according to the prior of classes (see
Fig. 2).
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As the next step, consider a more general case where the
covariance matrices are not equal as we have in QDA. We
apply Singular Value Decomposition (SVD) to the covari-
ance matrix of the k-th class:

S, =Ur AU,

where the left and right matrices of singular vectors are
equal because the covariance matrix is symmetric. There-
fore:

. =U A UL,

where U; ' = U/ because it is an orthogonal matrix.
Therefore, we can simplify the following term:

(3’3 - uk)TEIZl(fc - Hk)
= (x - Hk)TUk Azzl U,I(a: — 1)
=(Uge—Uiw) AL Uiz — Uy ).

As A,;l is a diagonal matrix with non-negative elements
(because it is covariance), we can decompose it as:

1 A—1/2,4-1/2
A=A, 7"A .
Therefore:

Upz—Ujm) A Uz - Uy py)
= (Ui —Um) A PA 2 (U — U )
W AU - AU )T

(AU — AU ),

where (a) is because A,;T/2 = A,;l/Q because it is diago-
nal. We define the following transformation:

op i AL U, (42)

which also results in the transformation of the mean: ¢y, :

e A,;l/ QUJN. Therefore, the Eq. (28) can be restated
as:

(@) = — (|4

— 5 (6xl@) — 0xm) " (x(@) — bx(m,) + In(rm).

(43)
Ignoring the terms —(1/2) In(|X|) and In(7y ), we can see
that the transformation has changed the covariance matrix
of the class to identity matrix. Therefore, the QDA (and
also LDA) can be seen as simple comparison of distances
from the means of classes after applying a transformation to
the data of every class. In other words, we are learning the
metric using the SVD of covariance matrix of every class.
Thus, LDA and QDA can be seen as metric learning (Yang

& Jin, 2006; Kulis, 2013) in a perspective. Note that in
metric learning, a valid distance metric is defined as (Yang
& Jin, 2006):

A (@, i) = [l — gl = (@ — ) T A (2 — ),
(44)

where A is a positive semi-definite matrix, i.e., A > 0.
In QDA, we are also using (z — ) ;' (x — py,). The
covariance matrix is positive semi-definite according to the
characteristics of covariance matrix. Moreover, according
to characteristics of a positive semi-definite matrix, the in-
verse of a positive semi-definite matrix is positive semi-
definite so E;l > 0. Therefore, QDA is using metric
learning (and as will be discussed in next section, it can
be seen as a manifold learning method, too).

It is also noteworthy that the QDA and LDA can also
be seen as Mahalanobis distance (McLachlan, 1999;
De Maesschalck et al., 2000) which is also a metric:

dis (@, p) = [Jx — plliy = (- p) =7z - p),
(45)

where X is the covariance matrix of the cloud of data whose
mean is p. The intuition of Mahalanobis distance is that
if we have several data clouds (e.g., classes), the distance
from the class with larger variance should be scaled down
because that class is taking more of the space so it is more
probable to happen. The scaling down shows in the inverse
of covariance matrix. Comparing (x — )" ;' ( — py)
in QDA or LDA with Eq. (45) shows that QDA and LDA
are sort of using Mahalanobis distance.

8. LDA = FDA

In the previous section, we saw that LDA and QDA can
be seen as metric learning. We know that metric learning
can be seen as a family of manifold learning methods. We
briefly explain the reason of this assertion: As A > 0, we
cansay A = UU " = 0. Therefore, Eq. (44) becomes:

|z — pylfa = (= - lv’/k)TUUT (z — py)
=U'z-U"p)" (U'z-U"w),

which means that metric learning can be seen as compari-
son of simple Euclidean distances after the transformation
¢ : x — U'x which is a projection into a subspace with
projection matrix U. Thus, metric learning is a manifold
learning approach. This gives a hint that the Fisher Dis-
criminant Analysis (FDA) (Fisher, 1936; Welling, 2005),
which is a manifold learning approach (Tharwat et al.,
2017), might have a connection to LDA; especially, be-
cause the names FDA and LDA are often used interchange-
ably in the literature. Actually, other names of FDA are
Fisher LDA (FLDA) and even LDA.
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We know that if we project (transform) the data of a class
using a projection vector u € RP? to a p dimensional sub-
space (p < d), i.e.

z—u' w, (46)

for all data instances of the class, the mean and the covari-
ance matrix of the class are transformed as:

p—ulp, (47)
S u Su, (48)

because of characteristics of mean and variance.

The Fisher criterion (Xu & Lu, 2006) is the ratio of the
between-class variance, ag, and within-class variance, crfj:

2
fi= il? _ (upy —u'py)? _ (UT(HQ - Nl))
T uXutu e ul (B4 X)) u
(49)
The FDA maximizes the Fisher criterion:
T 2
.. (u (IJ‘2 - Nl)) (50)
maxtmue W (St ) u
which can be restated as:
maximize (u' (py — ul))z7 1)

subjectto u' (Zy + ) u=1,

according to Rayleigh-Ritz quotient method (Croot, 2005).
The Lagrangian (Boyd & Vandenberghe, 2004) is:

L= (u (g~ 1)) = AuT (82 + Zh)u 1),

where A is the Lagrange multiplier. Equating the derivative
of L to zero gives:

oL _
ou
= (g — )’ u=X(Z2+31)u,

2 (s — 1)’ u—2X (Zo + B1)u =0

which is a generalized eigenvalue problem ((u2 —
1e)?, (X2 + 21)) according to (Ghojogh et al., 2019b).
The projection vector is the eigenvector of (3o +
1) (g — pq)?; therefore, we can say:

u o< (B2 +21) (kg — py)?.

In LDA, the equality of covariance matrices is assumed.
Thus, according to Eq. (18), we can say:

wo (23) (kg — py)? < BT (py — ) (52)

According to Eq. (46), we have:

u'zoc (T (py — ul)Q)T:c. (53)

Comparing Eq. (53) with Eq. (23) shows that LDA
and FDA are equivalent up to a scaling factor (H1 —
ty) X (g — ps) (note that this term is multiplied as
an exponential factor before taking logarithm to obtain Eq.
(23), so this term a scaling factor). Hence, we can say:

LDA = FDA. (54)

In other words, FDA projects into a subspace. On the other
hand, according to Section 7, LDA can be seen as a met-
ric learning with a subspace where the Euclidean distance
is used after projecting onto that subspace. The two sub-
spaces of FDA and LDA are the same subspace. It should
be noted that in manifold (subspace) learning, the scale
does not matter because all the distances scale similarly.

Note that LDA assumes one (and not several) Gaussian for
every class and so does the FDA. That is why FDA faces
problem for multi-modal data (Sugiyama, 2007).

9. Relation to Logistic Regression

According to Egs. (16) and (32), Gaussian and Bernoulli
distributions are used for likelihood (class conditional) and
prior, respectively, in LDA and QDA. Thus, we are mak-
ing assumptions for the likelihood and prior, although we
finally work with posterior in LDA and QDA according to
Eq. (15). Logistic regression (Kleinbaum et al., 2002) says
why do we make assumptions on the likelihood and prior
when we want to work on posterior finally. Let us make
assumption directly for the posterior.

In logistic regression, first a linear function is applied to
the data to have 8"’ where R™! 5 2/ = [27,1]T and
B € R include the intercept. Then, logistic function
is used in order to have a value in range (0, 1) to simulate
probability. Therefore, in logistic regression, the posterior
is assumed to be:

P(C(x)| X = )
_ ( exp(BTa’) ))C(m)< 1

)lfc(m)
1+ exp(8 2’ 1+exp(BTa)

(55
where C(xz) € {—1,+1} for the two classes. Logistic
regression considers the coefficient 3 as the parameter to
be optimized and uses Newton’s method (Boyd & Vanden-
berghe, 2004) for the optimization. Therefore, in summary,
logistic regression makes assumption on the posterior while
LDA and QDA make assumption on likelihood and prior.

10. Relation to Bayes Optimal Classifier and
Gaussian Naive Bayes

The Bayes classifier maximizes the posteriors of the classes

(Murphy, 2012):

~

C(x) = arg max P(x € Cx | X = @). (56)
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According to Eq. (14) and Bayes rule, we have:

PlxeCi| X =z) xP(X =x|x €C) P(x € C),
—_———

Tk

(57)
where the denominator of posterior (the marginal) which
is:

IC]

=z)=>» PX

is ignored because it is not dependent on the classes C; to
Cie|-

According to Eq. (57), the posterior can be written in terms
of likelihood and prior; therefore, Eq. (56) can be restated
as:

=z|x€C)my,

~

C(x) = arg max PX=x|xzeCy). (58)
Note that the Bayes classifier does not make any assump-
tion on the posterior, prior, and likelihood, unlike LDA and
QDA which assume the uni-modal Gaussian distribution
for the likelihood (and we may assume Bernoulli distribu-
tion for the prior in LDA and QDA according to Eq. (32)).
Therefore, we can say the difference of Bayes and QDA
is in assumption of uni-modal Gaussian distribution for the
likelihood (class conditional); hence, if the likelihoods are
already uni-modal Gaussian, the Bayes classifier reduces to
QDA. Likewise, the difference of Bayes and LDA is in as-
sumption of Gaussian distribution for the likelihood (class
conditional) and equality of covariance matrices of classes;
thus, if the likelihoods are already Gaussian and the co-
variance matrices are already equal, the Bayes classifier re-
duces to LDA.

It is noteworthy that the Bayes classifier is an optimal clas-
sifier because it can be seen as an ensemble of hypothe-
ses (models) in the hypothesis (model) space and no other
ensemble of hypotheses can outperform it (see Chapter 6,
Page 175 in (Mitchell, 1997)). In the literature, it is referred
to as Bayes optimal classifier. To better formulate the ex-
plained statements, the Bayes optimal classifier estimates
the class as:

Cla) = argmax >~ P(Ci|hy) P(D|hy) B(hy), (59

where C := {C1,...,Cj¢|}, D := {x;}}_, is the training
set, h; is a hypothesis for estimating the class of instances,
and H is the hypothesis space including all possible hy-
potheses.

According to Bayes rule, similar to what we had for Eq.
(57), we have:

P(h;| D) oc P(D | hy) P(hy).

Therefore, Eq. (59) becomes (Mitchell, 1997):

C(z) = argmax Z (Ck | hj) P(h; | D), (60)

In conclusion, the Bayes classifier is optimal. Therefore, if
the likelihoods of classes are Gaussian, QDA is an optimal
classifier and if the likelihoods are Gaussian and the co-
variance matrices are equal, the LDA is an optimal classi-
fier. Often, the distributions in the natural life are Gaussian;
especially, because of central limit theorem (Hazewinkel,
2001), the summation of independent and identically dis-
tributed (iid) variables is Gaussian and the signals usually
add in the real world. This explains why LDA and QDA
are very effective classifiers in machine learning. We also
saw that FDA is equivalent to LDA. Thus, the reason of ef-
fectiveness of the powerful FDA classifier becomes clear.
We have seen the very successful performance of FDA
and LDA in different applications, such as face recogni-
tion (Belhumeur et al., 1997; Etemad & Chellappa, 1997;
Zhao et al., 1999), action recognition (Ghojogh et al., 2017;
Mokari et al., 2018), and EEG classification (Malekmo-
hammadi et al., 2019).

Implementing Bayes classifier is difficult in practice so we
approximate it by naive Bayes (Zhang, 2004). If z; denotes
the j-th dimension (feature) of & = [z1,...,24] ", Eq. (58)
is restated as:

5(w) = argmax 7 P(x1,z9,...,2q|x € C). (61)

The term P(x1,x9,...,24|x € Cg) is very difficult to
compute as the features are possibly correlated. Naive
Bayes relaxes this possibility and naively assumes that the
features are conditionally independent (L) when they are
conditioned on the class:

P(ml,JZg,...,l‘d‘x S Ck)
n d
~ P(a1 | Ch) P22 | Ch) -+ Plwa| Ch) = [ [ Pl |Ch).
7j=1
Therefore, Eq. (61) becomes:
R d
C(x) = arg max 7y l_Il]P’(xj | Ck). (62)
j=

In Gaussian naive Bayes, univariate Gaussian distribution
is assumed for the likelihood (class conditional) of every
feature:

exp (— (5 = )" gk) ), (63)



Linear and Quadratic Discriminant Analysis: Tutorial 9

where the mean and unbiased variance are estimated as:

PO B
R M= > @i 1(Cxi) = k), (64)
=1
. IR ~
R>6: = g > (@i — k) 1(Clx;) = k), (65)
=1

where z; ; denotes the j-th feature of the ¢-th training in-
stance. The prior can again be estimated using Eq. (32).
According to Egs. (62) and (63), Gaussian naive Bayes is
equivalent to QDA where the covariance matrices are di-
agonal, i.e., the off-diagonal of the covariance matrices are
ignored. Therefore, we can say that QDA is more pow-
erful than Gaussian naive Bayes because Gaussian naive
Bayes is a simplified version of QDA. Moreover, it is obvi-
ous that Gaussian naive Bayes and QDA are equivalent for
one dimensional data. Comparing to LDA, the Gaussian
naive Bayes is equivalent to LDA if the covariance matrices
are diagonal and they are all equal, i.e., O’% = ... = 0'|2C‘;
therefore, LDA and Gaussian naive Bayes have their own
assumptions, one on the off-diagonal of covariance matri-
ces and the other one on equality of the covariance matri-
ces. As Gaussian naive Bayes has some level of optimality
(Zhang, 2004), it becomes clear why LDA and QDA are
such effective classifiers.

11. Relation to Likelihood Ratio Test

Consider two hypotheses for estimating some parameter,
a null hypothesis Hj and an alternative hypothesis H 4.
The probability P(reject Hy | Hy) is called type 1 error,
false positive error, or false alarm error. The probabil-
ity P(accept Hy | H4) is called type 2 error or false nega-
tive error. The P(reject Hy | Hy) is also called significance
level, while 1 — P(accept Hy | Ha) = P(reject Hy | Ha) is
called power.

If L(04) and L(6y) are the likelihoods (probabilities) for
the alternative and null hypotheses, the likelihood ratio is:

_ L(04) _ f(=504)
L(0o)  f(x;60)

The Likelihood Ratio Test (LRT) (Casella & Berger, 2002)
rejects the Hy in favor of H 4 if the likelihood ratio is
greater than a threshold, i.e., A > t. The LRT is a very
effective statistical test because according to the Neyman-
Pearson lemma (Neyman & Pearson, 1933), it has the
largest power among all statistical tests with the same sig-
nificance level.

A (66)

If the sample size is large, n — oo, and the 6 4 is estimated
using MLE, the logarithm of the likelihood ratio asymptot-
ically has the distribution of 2 under the null hypothesis
(White, 1984; Casella & Berger, 2002):

2In(A) %y, (67)

where the degree of freedom of 2 distribution is df :=
dim(H 4) — dim(Hy) and dim(.) is the number of unspeci-
fied parameters in the hypothesis.

There is a connection between LDA or QDA and the LRT
(Lachenbruch & Goldstein, 1979). Recall Eq. (12) or (15)
which can be restated as:

fo() —1, (68)
fi(z) m
which is for the decision boundary. The Eq. (22) dealt with
the difference of fo(x) mo and f1(z) 71; however, here we
are dealing with their ratio. Recall Fig. 1 where if we move
2* to the right and left, the ratio fo(x*) mo/ f1(x*) my de-
creases and increases, respectively, because the probabili-
ties of the first and second class happening change. In other
words, moving the z* changes the significance level and
power. Therefore, Eq. (68) can be used to have a statis-
tical test where the posteriors are used in the ratio, as we
also used posteriors in LDA and QDA. The null/alternative
hypothesis an be considered to be the mean and covariance
of the first/second class. In other words, the two hypothe-
ses say that the point belongs to a specific class. Hence, if
the ratio is larger than a value t, the instance « is estimated
to belong to the second class; otherwise, the first class is
chosen. According to Eq. (16), the Eq. (68) becomes:

> ¢

)

(69)

for QDA. In LDA, the covariance matrices are equal, so:

_1(33 - H2)) T2
_1(5” - Hl)) T

> t. (70)

As can be seen, changing the priors change impacts the ra-
tio as expected. Moreover, the value of ¢ can be chosen
according to the desired significance level in the x? distri-
bution using the x? table. The Egs. (69) and (70) show
the relation of LDA and QDA with LRT. As the LRT has
the largest power (Neyman & Pearson, 1933), the effective-
ness of LDA and QDA in classification is explained from a
hypothesis testing point of view.

12. Simulations

In this section, we report some simulations which make the
concepts of tutorial clearer by illustration.

12.1. Experiments with Equal Class Sample Sizes

We created a synthetic dataset of three classes each of
which is a two dimensional Gaussian distribution. The
means and covariance matrices of the three Gaussians from
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Figure 3. The synthetic dataset: (a) three classes each with size 200, (b) two classes each with size 200, (c) three classes each with size
10, (d) two classes each with size 10, (e) three classes with sizes 200, 100, and 10, (f) two classes with sizes 200 and 10, and (g) two
classes with sizes 400 and 200 where the larger class has two modes.

which the class samples were randomly drawn are: The three classes are shown in Fig. 3-a where each has
sample size 200. Experiments were performed on the three
=447, py=[3,-3]", p, =[-3,3", classes. We also performed experiments on two of the three

classes to test a binary classification. The two classes are

5, = [10 1} S, = [g 2] S, = L% 145] . shown in Fig. 3-b. The LDA, QDA, naive Bayes, and
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Figure 4. Experiments with equal class sample sizes: (a) LDA for two classes, (b) QDA for two classes, (¢) Gaussian naive Bayes for

two classes, (d) Bayes for two classes, (e) LDA for three classes,
and (h) Bayes for three classes.

Bayes classifications of the two and three classes are shown
in Fig. 4. For both binary and ternary classification with
LDA and QDA, we used Eqgs. (31) and (28), respectively,
with Eq. (29). We also estimated the mean and covariance
using Egs. (33), (35), and (36). For Gaussian naive Bayes,

(f) QDA for three classes, (g) Gaussian naive Bayes for three classes,

we used Egs. (62) and (63) and estimated the parameters
using Eqgs. (64) and (65). For Bayes classifier, we used
Eq. (58) with Eq. (63) but we do not estimate the mean
and variance; except, in order to use the exact likelihoods
in Eq. (58), we use the exact mean and covariance matrices
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Figure 5. Experiments with small class sample sizes: (a) LDA for two classes, (b) QDA for two classes, (c) Gaussian naive Bayes for
two classes, (d) Bayes for two classes, (e) LDA for three classes, (f) QDA for three classes, (g) Gaussian naive Bayes for three classes,

and (h) Bayes for three classes.

of the distributions which we sampled from. We, however,

estimated the priors. The priors were estimated using Eq.
(32) for all the classifiers.

As can be seen in Fig. 4, the space is partitioned into
two/three parts and this validates the assertion that LDA
and QDA can be considered as metric learning methods
as discussed in Section 7. As expected, the boundaries of

LDA and QDA are linear and curvy (quadratic), respec-
tively. The results of QDA, Gaussian naive Bayes, and
Bayes are very similar although they have slight differ-
ences. This is because the classes are already Gaussian so
if the estimates of means and covariance matrices are accu-
rate enough, QDA and Bayes are equivalent. The classes
are Gaussians and the off-diagonal elements of covariance
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Figure 6. Experiments with different class sample sizes: (a) LDA for two classes, (b) QDA for two classes, (c) Gaussian naive Bayes for

two classes, (d) Bayes for two classes, (e) LDA for three classes,
and (h) Bayes for three classes.

matrices are also small compared to the diagonal; therefore,
naive Bayes is also behaving similarly.

12.2. Experiments with Small Class Sample Sizes

According to Monte-Carlo approximation (Robert &
Casella, 2013), the estimates in Eqgs. (33), (35), (64) and
(65) are more accurate if the sample size goes to infinity,

(f) QDA for three classes, (g) Gaussian naive Bayes for three classes,

ie., n — oo. Therefore, if the sample size is small, we
expect mode difference between QDA and Bayes classi-
fiers. We made a synthetic dataset with three or two classes
with the same mentioned means and covariance matrices.
The sample size of every class was 10. Figures 3-c and
3-d show these datasets. The results of LDA, QDA, Gaus-
sian naive Bayes, and Bayes classifiers for this dataset are
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Figure 7. Experiments with multi-modal data: (a) LDA, (b) QDA, (c) Gaussian naive Bayes, and (d) Bayes.

shown in Fig. 5. As can be seen, now, the results of QDA,
Gaussian naive Bayes, and Bayes are different for the rea-
son explained.

12.3. Experiments with Different Class Sample Sizes

According to Eq. (32) used in Egs. (28), (31), (58), and
(62), the prior of a class changes by the sample size of
the class. In order to see the effect of sample size, we
made a synthetic dataset with different class sizes, i.e., 200,
100, and 10, shown in Figs. 3-e, 3-f. We used the same
mentioned means and covariance matrices. The results are
shown in Fig. 6. As can be seen, the class with small sam-
ple size has covered a small portion of space in discrimina-
tion which is expected because its prior is small according
to Eq. (32); therefore, its posterior is small. On the other
hand, the class with large sample size has covered a larger
portion because of a larger prior.

12.4. Experiments with Multi-Modal Data

As mentioned in Section 8, LDA and QDA assume uni-
modal Gaussian distribution for every class and thus FDA

or LDA faces problem for multi-modal data (Sugiyama,
2007). For testing this, we made a synthetic dataset with
two classes, one with sample size 400 having two modes of
Gaussians and the other with sample size 200 having one
mode. We again used the same mentioned means and co-
variance matrices. The dataset is shown in Fig. 3-g.

The results of the LDA, QDA, Gaussian naive Bayes, and
Bayes classifiers for this dataset are shown in Fig. 7. The
mean and covariance matrix of the larger class, although
it has two modes, were estimated using Eqgs. (33), (35),
(64) and (65) in LDA, QDA, and Gaussian naive Bayes.
However, for the likelihood used in Bayes classifier, i.e., in
Eq. (58), we need to know the exact multi-modal distribu-
tion. Therefore, we fit a mixture of two Gaussians (Gho-
jogh et al., 2019a) to the data of the larger class:

2
P(XZ:B|(L‘€Ck)Zzwkf($§ﬂk72k)a (71)
k=1

where f(x; p, Xi) is Eq. (16) and we the fitted parame-
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ters were:

py =[-3.88,4]", py=[3.04,-2.92]",

s _ [927 079) o [2.87 0.03
L= 1079 4.821° <27 10.03 3.78|°

w1 = 0497 Wy = 0.502.

As Fig. 7 shows, LDA has not performed well enough
as expected. The performance of QDA is more accept-
able than LDA but still not good enough because QDA
also assumes a uni-modal Gaussian for every class. The
result of Gaussian naive Bayes is very different from the
Bayes here because the Gaussian naive Bayes assumes uni-
modal Gaussian with diagonal covariance for every class.
Finally, the Bayes has the best result as it takes into account
the multi-modality of the data and it is optimum (Mitchell,
1997).

13. Conclusion and Future Work

This paper was a tutorial paper for LDA and QDA as two
fundamental classification methods. We explained the rela-
tions of these two methods with some other methods in ma-
chine learning, manifold (subspace) learning, metric learn-
ing, statistics, and statistical testing. Some simulations
were also provided for better clarification.

This paper focused on LDA and QDA which are discrim-
inators with one and two polynomial degrees of freedom,
respectively. As the future work, we will work on a tuto-
rial paper for non-linear discriminant analysis using kernels
(Baudat & Anouar, 2000; Li et al., 2003; Lu et al., 2003),
which is called kernel discriminant analysis, to have dis-
criminators with more than two degrees of freedom.
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