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Introduction to Statistical Learning

Exercise set #1

Exercise 1 - Consider the binary classification model where the random pair (X,Y ) has
distribution P over R× {0, 1} and :

L(X | Y = 0) = U([0, θ])
L(X | Y = 1) = U([0, 1])

p = P(Y = 1)

with p, θ ∈ (0, 1) fixed. Compute the posterior probability η(x) = P(Y = 1 | X = x), for
any x ∈ R, as a function of p, θ. What if θ = 1/2 ?

Exercise 2 - Consider the binary classification model where the random pair (X,Y ) has
distribution P over R+ × {0, 1} and :

— the marginal distribution of X over R+ is denoted PX

— the conditional distribution of Y given X = x is a Bernoulli distribution with

parameter η(x) =
x

x+ θ
, for any x ∈ R+, and for fixed θ > 0.

Find the Bayes classifier for this model (i.e. the minimizer of L(g) = P(Y ̸= g(X))
over all measurable classifiers g : R+ → {0, 1}. Give the expression of the Bayes error
L∗ = L(g∗) in the case where PX = U([0, αθ]) with α > 1. What is the value of α that
maximizes L∗ ?

Exercise 3 - Let X = (T,U, V )T where T,U, V IID real-valued random variables with
exponential distribution E(1). Define Y = I{T + U + V < θ} with fixed θ > 0.

1. Find the Bayes classifier g∗(T,U) when V is not observed. Give the expression of
the classification error of g∗ (also called Bayes error). Compute it for θ = 9.

2. Now assume that only T is observed, and address the same questions as above.

3. Propose a classifier for X when none of T,U, V are observed. What is its classifica-
tion error ?

Exercise 4 - Find the expressions of f+, f− and η in the following probabilistic models :

— Discriminant Analysis : find η

f+ = Nd(µ+,Σ+), f− = Nd(µ−,Σ−)

— Logistic regression : find f+, f−

log

(
ηθ(x)

1− ηθ(x)

)
= h(x, θ) , typically h(x, θ) = θTx
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Exercise 5 - Find the optimal elements in the following cases of error measures with
binary classification data :

1. Asymmetric cost - set ω ∈ (0, 1),

Lω(g) = 2E
(
(1− ω)I{Y = +1}I{g(X) = −1}

+ ωI{Y = −1}I{g(X) = +1}
)

2. Classification with mass constraint - set u ∈ (0, 1)

min
g

P(Y ̸= g(X)) subject to P(g(X) = 1) = u

3. Classification with reject option - set γ ∈ (0, 1/2)

LR
d (g) = P(Y ̸= g(X) , g(X) ̸= ®) + γP(g(X) = ®)

Exercise 6 - Consider (X,Y ) a random pair that models classification data with labels in
{0, 1}. Define the following classification error

Lω(g) = E
(
2ω(Y ) · I{Y ̸= g(X)}

)
where ω(0) + ω(1) = 1.

Consider the unit square in R2.

1. Plot the curves defined by g 7→ (P{g(X) = 1 | Y = 0},P{g(X) = 1 | Y = 1}) when
g varies such that Lω(g) = C with C fixed, for different values of C.

2. Same question but assuming now that P{g(X) = 1} = C with C fixed.

Exercise 7 - We consider the model for classification data where X is a random vector
on Rd and Y is a random variable taking values in {−1,+1}. We denote η(x) = P{Y =
+1 | X = x} the posterior probability. We consider the following problems for which the
question is to compute the optimal decision rule g∗ or f∗ - please also provide the main
proof arguments.

1. Criterion to minimize : R(g) = E
(
(Y − g(X))2

)
where g : Rd → {−1,+1}

2. Criterion to minimize : R(f) = E
(
(Y − f(X))2

)
where f : Rd → R

3. Criterion to minimize : A(f) = E exp(−Y f(X))) where f : Rd → R ∪ {−∞,+∞}.
4. Criterion to minimize : A(f) = E

(
log(1 + exp(−Y f(X)))

)
where f : Rd → R ∪

{−∞,+∞}.
5. Criterion to minimize : A2(f) = E

(
max{0, 1− Y f(X)}

)
where f : Rd → R.

Explain why such criteria are relevant for the binary classification problem.
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Exercice 8 - Consider IID random pairs (X,Y ) and (X ′, Y ′) over Rd×Y. Set the following
posterior probabilities :

∀x, x′ ∈ Rd, ρ+(x, x
′) = P{Y − Y ′ > 0 | X = x,X ′ = x′}

ρ−(x, x
′) = P{Y − Y ′ < 0 | X = x,X ′ = x′}

and for any preference rule π : Rd × Rd → {−1, 0, 1}, consider the pairwise error measure

L(π) = P
{
(Y − Y ′) · π(X,X ′) < 0

}
.

1. Find the Bayes rule π∗ and the Bayes error L∗ = L(π∗) for this problem, as well as
the excess of risk L(π)− L∗ for any preference rule π (will involve ρ+ and ρ−).

2. Assume Y = {−1,+1} and denote by η(x) = P{Y = +1 | X = x}. Provide the
expressions for ρ+(x, x

′) and ρ−(x, x
′) and discuss how the behavior of η could lead

to difficult situations for the learning process to be efficient.

3. Assume now that Y = R and that Y = m(X) + σ(X) · N where m and σ are
PX -measurable functions, N is a random noise variable with normal distribution
N (0, 1), while N and X are independent random variables. Provide the expressions
for ρ+(x, x

′) and ρ−(x, x
′) in this case and discuss the relation between properties

of the model and the learning process.
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