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Introduction to Statistical Learning

Exercise set #1

Exercise 1 - Consider the binary classification model where the random pair (X,Y") has
distribution P over R x {0,1} and :

LX[Y =0) =u([o,6])
LX[Y =1) =u([0,1])
p=PY =1)

with p,0 € (0,1) fixed. Compute the posterior probability n(z) = P(Y =1 | X = x), for
any x € R, as a function of p, §. What if 0 = 1/27

Exercise 2 - Consider the binary classification model where the random pair (X,Y") has
distribution P over R4 x {0,1} and :

— the marginal distribution of X over R, is denoted Px

— the conditional distribution of Y given X = x is a Bernoulli distribution with

L, for any z € R4, and for fixed 6 > 0.
x+0

Find the Bayes classifier for this model (i.e. the minimizer of L(g) = P(Y # ¢(X))
over all measurable classifiers g : Ry — {0,1}. Give the expression of the Bayes error
L* = L(g*) in the case where Px = U([0,af]) with o > 1. What is the value of « that
maximizes L*?

parameter 7n(z) =

Exercise 3 - Let X = (T,U, V)T where T,U,V 1ID real-valued random variables with
exponential distribution £(1). Define Y = I{T + U + V < 0} with fixed 6 > 0.

1. Find the Bayes classifier ¢*(7',U) when V is not observed. Give the expression of
the classification error of ¢g* (also called Bayes error). Compute it for § = 9.

2. Now assume that only T is observed, and address the same questions as above.

3. Propose a classifier for X when none of T, U,V are observed. What is its classifica-
tion error ?

Exercise 4 - Find the expressions of fi, f_ and 7 in the following probabilistic models :

— Discriminant Analysis : find 7

f+ = Na(ps, 84), f- = Na(p-, 2-)

— Logistic regression : find fi, f_

19 () , .
log ([ ———7~ ) = I _
o8 (220005 ) =) . ovpially b 0) = 7
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Exercise 5 - Find the optimal elements in the following cases of error measures with
binary classification data :

1. Asymmetric cost - set w € (0, 1),

Lo(g) = 2E((1 — w){Y = +1}I{g(X) = -1}
+ wl{Y = —1}I{g(X) = +1})

2. Classification with mass constraint - set u € (0, 1)

mgin]P’(Y # g(X)) subject to P(g(X)=1)=u

3. Classification with reject option - set v € (0,1/2)

Li(g) =P(Y # g(X) , 9(X) # ®) +P(9(X) = ®)

Exercise 6 - Consider (X,Y") a random pair that models classification data with labels in
{0,1}. Define the following classification error

Lu(9) =E(20(Y) - I{Y # g(X)})
where w(0) + w(1) = 1.
Consider the unit square in R2.

1. Plot the curves defined by g — (P{g(X)=1]Y =0},P{g(X)=1]Y =1}) when
g varies such that L, (g) = C with C fixed, for different values of C.

2. Same question but assuming now that P{g(X) =1} = C with C fixed.

Exercise 7 - We consider the model for classification data where X is a random vector
on R? and Y is a random variable taking values in {—1,41}. We denote n(z) = P{Y =
+1 | X = z} the posterior probability. We consider the following problems for which the
question is to compute the optimal decision rule g* or f* - please also provide the main
proof arguments.

1. Criterion to minimize : R(g) = E((Y — g(X))?) where g : R? — {—1,+1}

2. Criterion to minimize : R(f) =E((Y — f(X))?) where f : R - R

3. Criterion to minimize : A(f) = Eexp(—=Y f(X))) where f : R? — RU {—o0, +00}.
4. Criterion to minimize : A(f) = E(log(1 + exp(—Y f(X)))) where f : R - R U

{_007 +OO}'
5. Criterion to minimize : As(f) = E(max{0,1 — Y f(X)}) where f : R? = R.

Explain why such criteria are relevant for the binary classification problem.
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Exercice 8 - Consider ITD random pairs (X, Y) and (X', Y”) over R?x ). Set the following
posterior probabilities :

Vo, o' €RY, pi(x,2’) =P{Y -Y' >0|X =2,X'=212'}
p—(z,2/) =P{Y -Y' <0|X =2,X'=2'}

and for any preference rule 7 : R4 x R% — {—1,0,1}, consider the pairwise error measure
Lim)=P{(Y -Y')-7(X,X') <0} .

1. Find the Bayes rule 7* and the Bayes error L* = L(7*) for this problem, as well as
the excess of risk L(w) — L* for any preference rule 7 (will involve p; and p_).

2. Assume )Y = {—1,+1} and denote by n(z) = P{Y = +1 | X = z}. Provide the
expressions for p4(z,2’) and p_(z, ") and discuss how the behavior of 7 could lead
to difficult situations for the learning process to be efficient.

3. Assume now that J = R and that ¥ = m(X) + o(X) - N where m and o are
Px-measurable functions, NV is a random noise variable with normal distribution
N(0,1), while N and X are independent random variables. Provide the expressions
for py(z,2') and p_(x,2’) in this case and discuss the relation between properties
of the model and the learning process.
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