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Course objectives

® |ntroduction to the mathematical foundations of machine
learning

® Setup a learning problem to better address users’ expectations
and constraints

e Get insights to understand the key principles of shallow
machine learning methods



Practical information about the course

¢ Course website :
http://nvayatis.perso.math.cnrs.fr/ISLcourse.html

® Schedule and location

Location : ENS Paris-Saclay

Dates : Check the online agenda

Classroom : Check out the agenda regularly

Format : 7 lectures + 4 exercise sessions + personal research
Office hours : on demand

e Evaluation :

Two mandatory exams : Mid-term exam M + final exam F
Final grade G = max (F; (F+M)/2)

Mid-term on November 5 am

Final exam on January 7 am


http://nvayatis.perso.math.cnrs.fr/ISLcourse.html

Course overview

e Chapter 1 : Optimality in statistical learning
Data / Objectives / Optimal elements / ERM

e Chapter 2 : Mathematical foundations of statistical learning

Concentration inequality / Complexity measures /
Regularization

e Chapter 3 : Consistency of mainstream machine learning
methods

Boosting, SVM, Neural networks / Bagging, Random forests



Chapter 1 - Optimality in statistical
learning



Overview of Chapter 1

Modeling the data :

® 3 probabilistic view

Modeling the prediction objective :

® performance metrics and risk functionals for prediction

The goal of learning :

® optimal elements

The mother of most Machine Learning algorithms :
® ERM : Empirical Risk Minimization



Chapter 1

A. Modeling classification data



Generative vs. discriminative

® (X, Y) random pair with distribution P over R x {—1,+1}

® Generative view - Joint distribution P as a mixture

® (Class-conditional densities : f; and f_
® Mixture parameter : p = P{Y = +1}

® Discriminative view - Joint distribution P described by

(Px,n)
® Marginal distribution : X ~ Px = dfx/d\q4
® Posterior probability function :

nx)=P{Y =1|X=x}, VYxecR?

® Marginal distribution of X has density : fx = pfy. + (1 — p)f_
® Posterior probability is given by : n = pf} /fx



Exercise

Find the expressions of fi, f— and 7 in the following probabilistic
models :

e Discriminant Analysis : find  knowing
fr = Na(pt, X4), - = Ng(p—,Z-)

e |ogistic regression : find fi, f_ knowing

log <1ﬁ97(7;<()x)> — h(x,0) , typically h(x,8) = 07T x



Chapter 1

B. Optimality in the binary classification objective



Classifier, Error measure, Optimal Elements

e Classifier : g : RY — {—1,+1}
e Classification error :  L(g) =P {g(X) # Y}
L(g) = E(n(X) - H{g(X) = -1} + (1 - n(X)) - {g(X) = 1})
® Bayesrule: g*(x) =2I{n(x)>1/2} -1, VYxeR?
* Bayes error : L* = L(g") = E{min(n(X),1 — (X))}
e Excess risk :

e - " =28 {}u0x) - 3| 1) # &' X0)}



Link with parametrics : Plug-in methods do
the job but...

® et 7 an estimate of the posterior n based on a sample D,
(e.g. LDA/QDA, logistic regression)

Consider g a plug-in estimator based on 7

g(x) =2I{7j(x) >1/2} -1, VYxeR’

We have, conditionally on the sample D, :

L(g) — L* < 2Ex (|7(X) — n(X))

But estimation of 7 for high dimensional data suffers of the
curse of dimensionality !

® Q : Do we really need to estimate n?



Chapter 1

C. Convex risk minimization



Convex Risk Minimization (CRM)

Binary classification data with Y € {+1, -1}
Real-valued decision rule (soft classifier) f : R? — R
Cost function ¢ : R — R convex, increasing, ¢(0) =1

Expected ¢-risk :

Main examples :
o(x) = €%, logy(1+4€¥), (14 x)+

Note that : L(sgn(f)) < A(f)



Exercise

Find the optimal elements for convex risk minimization :

f*=argmin A(f) , A* = A(f*)
f

in the following examples :
() ¢(u) = exp(u)

(i) @(u) = loga(1 + exp(u))
(iii) o(u) = (1+v)+



Zhang's lemma

Assumption (Al) : ¢ positive, convex, increasing, such that
p(0)=1

Set the 'entropy’ function :

H(n) = ;g&(mp(—a) + (1 =n)p(a))

Assumption (A2) : 3s > 1 and ¢ > 0 such that Vu € (0,1) ,

s

- < (1 Hw)

i

Under (A1-A2), we have, for some s > 1, that any real-valued
measurable f satisfies :

L(gr) — L* < 2c(A(f) — A*)*



Risk communication (1) : Zhang (2004)

Classifier obtained by CRM :
gr+(x) =2I{f*(x) >0} — 1
Result : if ¢ € {exp, logit, hinge, ...}, then
gr- = g (Bayes rule)
Zhang's lemma : if ¢ € {exp,logit}, then
L(gr) — L < VA(A(F) — A2
Zhang's lemma : if ¢ = hinge, then

L(gr) — L < A(f) — A"



Risk communication (2) : Bartlett, Jordan, and

McAuliffe (2006)
Set the 'entropy’ function :

H(n) = ;g&(nw(—a) + (1 =n)p(a))

.. and the one-sided version :

H™(n) = waan 1)< J(me(=a) + (1 = n)p(a))

Define the communication funtion :
_(14+x _(1—x
v = (57) - (55)
Control of excess risk with ¢~ :
L(gr) — L* < ¢ HA(F) — AY)

and ¢ convex implies limg+ ™1 =0




Chapter 1

D. Empirical Risk Minimization



Supervised learning setup
e Goal of learning : an optimal decision function h* : X — )
X : domain set, ) : label set

® |nput of learning :
® Training data : a set of labeled data

Dnp={(X1, Y1), ., (Xn, Ya)}

of size n, where the (X, Y)'sarein X x Y

® Hypothesis space : a collection H of candidate decision
functions h : X =Y

® QOutput of learning : an empirical decision function h in the
hypothesis space H estimated from training data D,

e Reference in # : the best decision function h in the class (the
more data, the closer h to h)



The ERM principle
Definition
® Loss function : £: )Y x Y — [0, 4+00]

® Empirical risk of a decision rule h : this is a data-dependent
functional

Lo(h) = - >~ h(X0). )

e ERM = Empirical Risk Minimization
Learning from training data amounts to solving the following
optimization problem

hy, = arg min Z,,(h)
heH

where the minimization is restricted to the hypothesis space.



The notion of true error

® Assumption :

(X, Y) is a pair of random variables with joint distribution P

® True error of a decision rule h : this is a distribution-dependent
functional

L(h) = E(£(h(X), Y)) = /f(h(X),y)dP(X,y)



Optimal elements, consistency and bounds

® Bayes rule h* and Bayes error L*

h* =argminL(h) and L* = L(h")
h

e (Strong) Consistency of an inference principle hn
L(E,,) — L*,  almost surely
® The nonasymptotic bounds Eldorado :

L(ha) = L* < U(n,H)  whp



Estimation vs. approximation error
Extension of bias-variance decomposition

Proof idea : Add and retrieve L, ( n) L 2(h), L(h), then use
the definition of ERM to upper bound the sum. Difference

between L and L, appear twice.
We have :
L(ho)— 1" <2sup |L(h) — Lu(B)| +  L(R)—L*
heH ~—

approximation (deterministic)

estimation (stochastic)



The key trade-off in Machine Learning

® Denote by L(h) the error measure for any decision function h
® We have : L(h) = i%fL ,and L(h*)=infL

® Bias-Variance type decomposition of error for any output h:

-~ - -

L(h)— L(h*)= L(h)—L(h) + L(h) — L(h*)

estimation (stochastic) approximation (deterministic)

Hypothesis class H

h*

Estimation error

i Approximation error
(variance)

(bias)



Chapter 1

E. Some other supervised learning problems



From plain classification to...

Classification in real life : multiclass classification, asymmetric
cost, classification with mass constraint, classification with
reject option, Neyman-Pearson classification

Preference learning
Scoring

Regression



Variations on binary classification

® Asymmetric cost - set w € (0, 1),

Lo(g) = 2E((1 - w){Y = +1}I{g(X) = —1}
+wIl{Y = —1}{g(X) = +1})

¢ Classification with mass constraint - set v € (0, 1)
minP(Y # g(X)) subjectto P(g(X)=1)=u
g
(Refer to Clémengon and Vayatis (2007))
¢ Classification with reject option - set v € (0,1/2)

Li(g) =P(Y #g(X) , g(X) # ®) +1P(g(X) = ®)
(Refer to Herbei and Wegkamp (2006))



Which decision ?

Build a decision rule to be evaluated on a new sample

@ Predictive Classification
Given a new X', predict the label Y’
Decision rule : g : RY — {—1,+1}

Happy if classification error rate is low on average

@® Predictive Ranking/Scoring
Given new data {X{,..., X],}, predict a ranking (X! ,..., X!)

n’ Im
Decision rule : s : RY — R that defines the permutation
(y.vyim)

Happy if (Y ,..., Y] ) is "close" to a decreasing sequence

Goal : Define an order on RY from binary label information



Coming next

Next lecture :
® Discuss the case of different prediction objectives
® What is the complexity of learning

o Mathematical tools

= Homework — Prepare Exercise Set #1



