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Course objectives

• Introduction to the mathematical foundations of machine
learning

• Setup a learning problem to better address users’ expectations
and constraints

• Get insights to understand the key principles of shallow
machine learning methods



Practical information about the course

• Course website :
http://nvayatis.perso.math.cnrs.fr/ISLcourse.html

• Schedule and location

• Location : ENS Paris-Saclay
• Dates : Check the online agenda
• Classroom : Check out the agenda regularly
• Format : 7 lectures + 4 exercise sessions + personal research
• Office hours : on demand

• Evaluation :

• Two mandatory exams : Mid-term exam M + final exam F
• Final grade G = max (F ; (F+M)/2)
• Mid-term on November 5 am
• Final exam on January 7 am

http://nvayatis.perso.math.cnrs.fr/ISLcourse.html


Course overview

• Chapter 1 : Optimality in statistical learning

Data / Objectives / Optimal elements / ERM

• Chapter 2 : Mathematical foundations of statistical learning

Concentration inequality / Complexity measures /
Regularization

• Chapter 3 : Consistency of mainstream machine learning
methods

Boosting, SVM, Neural networks / Bagging, Random forests



Chapter 1 - Optimality in statistical
learning



Overview of Chapter 1

• Modeling the data :
• a probabilistic view

• Modeling the prediction objective :
• performance metrics and risk functionals for prediction

• The goal of learning :
• optimal elements

• The mother of most Machine Learning algorithms :
• ERM : Empirical Risk Minimization



Chapter 1
A. Modeling classification data



Generative vs. discriminative

• (X ,Y ) random pair with distribution P over Rd × {−1,+1}

1 Generative view - Joint distribution P as a mixture
• Class-conditional densities : f+ and f−
• Mixture parameter : p = P{Y = +1}

2 Discriminative view - Joint distribution P described by
(PX , η)

• Marginal distribution : X ∼ PX = dfX/dλd
• Posterior probability function :

η(x) = P{Y = 1 | X = x} , ∀x ∈ Rd

• Marginal distribution of X has density : fX = pf+ + (1 − p)f−
• Posterior probability is given by : η = pf+/fX



Exercise

Find the expressions of f+, f− and η in the following probabilistic
models :

• Discriminant Analysis : find η knowing

f+ = Nd(µ+,Σ+), f− = Nd(µ−,Σ−)

• Logistic regression : find f+, f− knowing

log

(
ηθ(x)

1 − ηθ(x)

)
= h(x , θ) , typically h(x , θ) = θT x



Chapter 1
B. Optimality in the binary classification objective



Classifier, Error measure, Optimal Elements

• Classifier : g : Rd → {−1,+1}

• Classification error : L(g) = P {g(X ) ̸= Y }

L(g) = E
(
η(X ) · I{g(X ) = −1}+ (1 − η(X )) · I{g(X ) = 1}

)
• Bayes rule : g∗(x) = 2I{η(x) > 1/2} − 1 , ∀x ∈ Rd

• Bayes error : L∗ = L(g∗) = E{min(η(X ), 1 − η(X ))}

• Excess risk :

L(g)− L∗ = 2E
{∣∣∣∣η(X )− 1

2

∣∣∣∣ · I{g(X ) ̸= g∗(X )}
}



Link with parametrics : Plug-in methods do
the job but...

• Let η̂ an estimate of the posterior η based on a sample Dn

(e.g. LDA/QDA, logistic regression)

• Consider ĝ a plug-in estimator based on η̂

ĝ(x) = 2I{η̂(x) > 1/2} − 1 , ∀x ∈ Rd

• We have, conditionally on the sample Dn :

L(ĝ)− L∗ ≤ 2EX

(
|η̂(X )− η(X )|

)
• But estimation of η for high dimensional data suffers of the

curse of dimensionality !

• Q : Do we really need to estimate η ?



Chapter 1
C. Convex risk minimization



Convex Risk Minimization (CRM)

• Binary classification data with Y ∈ {+1,−1}

• Real-valued decision rule (soft classifier) f : Rd → R

• Cost function φ : R → R+ convex, increasing, φ(0) = 1

• Expected φ-risk :

A(f ) = E (φ(−Y · f (X )))

• Main examples :

φ(x) = ex , log2(1 + ex), (1 + x)+

• Note that : L(sgn(f )) ≤ A(f )



Exercise

Find the optimal elements for convex risk minimization :

f ∗ = arg min
f

A(f ) , A∗ = A(f ∗)

in the following examples :

(i) φ(u) = exp(u)

(ii) φ(u) = log2(1 + exp(u))

(iii) φ(u) = (1 + u)+



Zhang’s lemma

• Assumption (A1) : φ positive, convex, increasing, such that
φ(0) = 1

• Set the ’entropy’ function :

H(η) = inf
α∈R

(ηφ(−α) + (1 − η)φ(α))

• Assumption (A2) : ∃s ≥ 1 and c > 0 such that ∀u ∈ (0, 1) ,∣∣∣∣12 − u

∣∣∣∣s ≤ cs(1 − H(u))

• Under (A1-A2), we have, for some s > 1, that any real-valued
measurable f satisfies :

L(gf )− L∗ ≤ 2c(A(f )− A∗)1/s



Risk communication (1) : Zhang (2004)

• Classifier obtained by CRM :

gf ∗(x) = 2I{f ∗(x) > 0} − 1

• Result : if φ ∈ {exp, logit, hinge, . . .}, then

gf ∗ = g∗ (Bayes rule)

• Zhang’s lemma : if φ ∈ {exp, logit}, then

L(gf )− L∗ ≤
√

2(A(f )− A∗)1/2

• Zhang’s lemma : if φ = hinge, then

L(gf )− L∗ ≤ A(f )− A∗



Risk communication (2) : Bartlett, Jordan, and

McAuliffe (2006)
• Set the ’entropy’ function :

H(η) = inf
α∈R

(ηφ(−α) + (1 − η)φ(α))

• ... and the one-sided version :

H−(η) = inf
α:α(2η−1)≤0

(ηφ(−α) + (1 − η)φ(α))

• Define the communication funtion :

ψ(x) = H−
(

1 + x

2

)
− H−

(
1 − x

2

)
• Control of excess risk with ψ−1 :

L(gf )− L∗ ≤ ψ−1(A(f )− A∗)

and φ convex implies lim0+ ψ
−1 = 0



Chapter 1
D. Empirical Risk Minimization



Supervised learning setup

• Goal of learning : an optimal decision function h∗ : X → Y
X : domain set, Y : label set

• Input of learning :
• Training data : a set of labeled data

Dn = {(X1,Y1), . . . , (Xn,Yn)}

of size n, where the (X ,Y )’s are in X × Y
• Hypothesis space : a collection H of candidate decision

functions h : X → Y

• Output of learning : an empirical decision function ĥ in the
hypothesis space H estimated from training data Dn

• Reference in H : the best decision function h̄ in the class (the
more data, the closer ĥ to h̄)



The ERM principle
Definition

• Loss function : ℓ : Y × Y → [0,+∞]

• Empirical risk of a decision rule h : this is a data-dependent
functional

L̂n(h) =
1
n

n∑
i=1

ℓ(h(Xi ),Yi )

• ERM = Empirical Risk Minimization
Learning from training data amounts to solving the following
optimization problem

ĥn = arg min
h∈H

L̂n(h)

where the minimization is restricted to the hypothesis space.



The notion of true error

• Assumption :

(X ,Y ) is a pair of random variables with joint distribution P

• True error of a decision rule h : this is a distribution-dependent
functional

L(h) = E(ℓ(h(X ),Y )) =

∫
ℓ(h(x), y)dP(x , y)



Optimal elements, consistency and bounds

• Bayes rule h∗ and Bayes error L∗

h∗ = arg min
h

L(h) and L∗ = L(h∗)

• (Strong) Consistency of an inference principle ĥn

L(ĥn) → L∗ , almost surely

• The nonasymptotic bounds Eldorado :

L(ĥn)− L∗ ≤ U(n,H) whp



Estimation vs. approximation error
Extension of bias-variance decomposition

• Proof idea : Add and retrieve L̂n(ĥn) , L̂n(h), L(h), then use
the definition of ERM to upper bound the sum. Difference
between L and L̂n appear twice.

• We have :

L(ĥn)− L∗ ≤ 2 sup
h∈H

|L(h)− L̂n(h)|︸ ︷︷ ︸
estimation (stochastic)

+ L(h)− L∗︸ ︷︷ ︸
approximation (deterministic)



The key trade-off in Machine Learning

• Denote by L(h) the error measure for any decision function h

• We have : L(h̄) = inf
H

L , and L(h∗) = inf L

• Bias-Variance type decomposition of error for any output ĥ :

L(ĥ)− L(h∗) = L(ĥ)− L(h̄)︸ ︷︷ ︸
estimation (stochastic)

+ L(h̄)− L(h∗)︸ ︷︷ ︸
approximation (deterministic)



Chapter 1
E. Some other supervised learning problems



From plain classification to...

• Classification in real life : multiclass classification, asymmetric
cost, classification with mass constraint, classification with
reject option, Neyman-Pearson classification

• Preference learning
• Scoring
• Regression



Variations on binary classification

• Asymmetric cost - set ω ∈ (0, 1),

Lω(g) = 2E
(
(1 − ω)I{Y = +1}I{g(X ) = −1}

+ ωI{Y = −1}I{g(X ) = +1}
)

• Classification with mass constraint - set u ∈ (0, 1)

min
g

P(Y ̸= g(X )) subject to P(g(X ) = 1) = u

(Refer to Clémençon and Vayatis (2007))

• Classification with reject option - set γ ∈ (0, 1/2)

LRd (g) = P(Y ̸= g(X ) , g(X ) ̸= ®) + γP(g(X ) = ®)

(Refer to Herbei and Wegkamp (2006))



Which decision ?
Build a decision rule to be evaluated on a new sample

1 Predictive Classification

Given a new X ′, predict the label Y ′

Decision rule : g : Rd → {−1,+1}

Happy if classification error rate is low on average

2 Predictive Ranking/Scoring

Given new data {X ′
1, . . . ,X

′
m}, predict a ranking (X ′

i1
, . . . ,X ′

im
)

Decision rule : s : Rd → R that defines the permutation
(i1, . . . , im)

Happy if (Y ′
i1
, . . . ,Y ′

im
) is "close" to a decreasing sequence

Goal : Define an order on Rd from binary label information



Coming next

Next lecture :
• Discuss the case of different prediction objectives
• What is the complexity of learning
• Mathematical tools

⇒ Homework → Prepare Exercise Set #1


