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Course overview

• Chapter 1 : Optimality in statistical learning

Probabilistic view / Performance criteria / Optimal
elements

• Chapter 2 : Mathematical foundations of statistical learning

Concentration inequality / Complexity measures /
Regularization

• Chapter 3 : Consistency of mainstream machine learning
methods

Boosting, SVM, Neural networks / Bagging, Random forests



Main messages of Chapter 1 (so far)

• To account for the uncertainty of evaluation, data are assumed
to be sampled according to a fixed but unknown probability
distribution.

• A prediction objective is characterized by an error measure,
e.g. the classification problem is characterized by
misclassification rate as an error measure in the case of
predicting binary labels using supervised classification data.

• The nature of optimal elements does tell something about
the difficulty of the prediction objective.

• Empirical Risk Minimization (ERM) can be seen as a generic
inference principle accounting for global optimization
methods (e.g. based on convex losses in the case of convex
risk minimization)



Outline for today

• Follow up on Optimality (Chapter 1)

• Variations of the plain classification problem
• Preference learning
• The detection problem : ROC curve, AUC & co.

• First results on ERM (Chapter 2)

• Finite case and deviation inequalities



Chapter 1 - back to work !
Extensions of the plain classification problem



Variations on binary classification

• Asymmetric cost - set ω ∈ (0, 1),

Lω(g) = 2E
(
(1 − ω)I{Y = +1}I{g(X ) = −1}

+ ωI{Y = −1}I{g(X ) = +1}
)

• Classification with mass constraint - set u ∈ (0, 1)

min
g

P(Y ̸= g(X )) subject to P(g(X ) = 1) = u

(Refer to Clémençon and Vayatis (2007))

• Classification with reject option - set γ ∈ (0, 1/2)

LRd (g) = P(Y ̸= g(X ) , g(X ) ̸= ®) + γP(g(X ) = ®)

(Refer to Herbei and Wegkamp (2006))



Exercise

Find g∗ and L∗ in the three previous scenarios for binary
classification :

• Asymmetric cost
• Uner mass constraint
• With reject option



Chapter 1
Preference learning using pairwise comparisons



A study by Checco and Demartini (2016)



Motivations

Data available at : https://github.com/AlessandroChecco/PairwiseMagnitudeStars

https://github.com/AlessandroChecco/PairwiseMagnitudeStars


Preference data

• X ,X ′ , IID random variables taking values in Rd

• Z ∈ R , preference label

• Z > 0 means "X is better than X ′"

• (X ,X ′,Z ) random triple with unknown distribution P

• Posterior distribution :

∀x , x ′ ∈ X , ρ+(x , x
′) = P{Z > 0 | X = x ,X ′ = x ′}

ρ−(x , x
′) = P{Z < 0 | X = x ,X ′ = x ′}

• If individual labels Y ,Y ′ are observed, then set for instance :

Z = sgn(Y − Y ′)



Preference error and optimal rule

• Preference rule : r : Rd × Rd → {−1, 0, 1}

• Ranking error = classification error with pairs

L(r) = P
{
Z · r(X ,X ′) < 0

}
• Optimal rule :

r∗(x , x ′) = 2I{ρ+(x , x ′) > ρ−(x , x
′)} − 1

• Minimal error :

L∗ = L(r∗) = E
{
min{ρ+(X ,X ′), ρ−(X ,X

′)}
}



Exercise

1 Classification data : Y ∈ {−1,+1} ,
η(x) = P{Y = 1 | X = x}
(i) Compute ρ+(x , x ′) in terms of η
(ii) Find the optimal rule and the optimal ranking error, as well as

the excess risk

2 Same questions with regression data : Y = m(X ) + σ(X ) · N
where N ∼ N (0, 1), N ⊥ X



Chapter 1
The detection problem : ROC curve, AUC & co.



The two types of error

• Consider s : Rd → R a detector response (socring rule)

• A hit corresponds to Y = +1, an alarm to {s(X ) ≥ t}

• True positive rate and false positive rate :

β(s, t) = P {s(X ) ≥ t | Y = +1} (TPR) → max
α(s, t) = P {s(X ) ≥ t | Y = −1} (FPR) → min

• Main point : trade-off required since

β(s, t) → 1 but α(s, t) → 1 whent → −∞
α(s, t) → 0 but β(s, t) → 0 whent → +∞



Receiver Operating Characteristic curve

• ROC curve of a detector response s :

t ∈ R 7→ (α(s, t), β(s, t))

• Property : the ROC curve is the power curve of the NP test,
hence the optimal detector response is η (up to compositions
with strictly increasing transformations)



Optimal elements for scoring

• X ∈ Rd - observation vector in a high dimensional space

• Y ∈ {−1,+1} - binary diagnosis (i.e. classification data)

• Key theoretical quantity (posterior probability)

η(x) = P{Y = 1 | X = x} , ∀x ∈ Rd

• Optimal scoring rules :

⇒ increasing transformations of η



Neyman-Pearson view
on binary classification

• Hypothesis testing :

H0 : X ∼ P− against H1 : X ∼ P+

• Neyman-Pearson problem : for α ∈ (0, 1), solve

max
T ,c

P
(
T (X ) > c|Y = +1

)
subject to P

(
T (X ) > c|Y = −1

)
≤ α

References :
Scott, Nowak (IEEE IT, 2005) - Clémençon, Vayatis (JMLR, 2006) -
Rigollet, Tong (JMLR, 2011)



Neyman-Pearson formulation

• Likelihood ratio test

T ∗(X ) =
dP+

dP−
(X ) =

1 − p

p
× η(X )

1 − η(X )

with threshold value c∗ such that

P
(
T ∗(X ) > c∗|Y = −1

)
= α

yields a uniformly most powerful test.
• Binary classification under constraints boils down to adjusting

the threshold in a likelihood ratio test



Representation of optimal scoring rules

• Note that if U ∼ U([0, 1])

∀x ∈ Rd , η(x) = E (I{η(x) > U})

• If s∗ = ψ ◦ η with ψ strictly increasing, then :

∀x ∈ Rd , s∗(x) = c + E (w(V ) · I{η(x) > V })

for some :
• c ∈ R,
• V continuous random variable in [0, 1]
• w : [0, 1] → R+ integrable.

• Optimal scoring amounts to recovering the level sets of η :

{x : η(x) > q}q∈(0,1)



Performance measures for scoring

• Curves :
• ROC curve
• (Precision-Recall curve)
• (Lift curve)

• Summaries :
• AUC (global measure)
• Partial AUC

(Dodd and Pepe ’03)
• Local AUC

(Clémençon and Vayatis ’07) ROC curves.
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Performance measures for scoring

• Curves :
• ROC curve
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• Summaries :
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Performance measures for scoring

• Curves :
• ROC curve
• (Precision-Recall curve)
• (Lift curve)

• Summaries :
• AUC (global measure)
• Partial AUC

(Dodd and Pepe ’03)
• Local AUC

(Clémençon and Vayatis ’07) Local AUC.



Probabilistic interpretation of AUC

• Area Under an ROC Curve (AUC)

AUC(s) = P(s(X) ≥ s(X′) | (Y,Y′) = (+1,−1))

(X ,Y ), (X ′,Y ′) i.i.d.

• The posterior probability is AUC-optimal and we have :

AUC∗−AUC(s) =
1

2p(1 − p)
E(| η(X )−η(X ′) | ·I{(X ,X ′) ∈ Γs})

where
• Γs = {(x , x ′) : (s(x)− s(x ′))(η(x)− η(x ′)) < 0} and
• p = P(Y = +1).



Chapter 2 - Mathematical tools
Probability inequalities
Complexity measures
Regularization and stability



Chapter 2
Introduction/Interlude



Learning like the twenty-question game

• Assume Nature has picked one function among K and we want
to reveal this function

• Assume we have an oracle answering YES or NO when we ask
a question about this function

• What is the optimal number n of questions to ask to find the
unknown function ?



Brute force learning
Finite case

• ISSUE : How many questions with answers YES or NO one has
to ask the oracle to find THE function among K functions ?

• STRATEGY : Proceed recursively by splitting the set of
functions in two groups and asking whether THE function is
the first group and removing the group which does not contain
the function. This leads to the identification of the desired
function with about logK questions.

• ANSWER : Number of questions n =

⌈
logK

log 2

⌉
• NB : this quantity represents the number of bits of information

characterizing the function in the set of K functions



Shannon’s Information theory
The origin of the logK

• Related to the entropy of a distribution P in information

theory : H(P) = −
K∑

k=1

P(k) logP(k)

• The entropy is the number of bits to encode a collection of K
symbols (functions)



From questions to data
Zero error case

• Notations : Domain space X and label space Y = {0, 1}
• ISSUE : How many examples (xi , yi ) ∈ X × Y are required to

find among a finite collection (size K ) of indicator functions
f : X → {0, 1} the desired one ?

• SAME ANSWER : Number of examples n =

⌈
logK

log 2

⌉
• STRATEGY : One has to find a vector xi such that half of the

functions take value 1 and the other half take value 0 and ask
the oracle whether the desired function takes value 1 or 0 on
this vector and discard those functions taking the opposite
value. Apply this n times.



Probably approximately correct learning
Zero error case

• REMARK : it may be hard to find such an xi which splits the
collection of functions in two.

• NEW MODEL : Assume X1, . . . ,Xn is an IID sample
• QUESTION : How many examples (Xi ,Yi ) are required to find

among a finite collection of indicator functions f : X → {0, 1}
the one that with probability 1 − δ is ε-close to the desired
one ?

• ANSWER : Number of examples

n =


logK + log

(
1
δ

)
ε





Probably approximately correct learning
General case

• ASSUME : among K functions, NONE of them commits zero
error on the sample (Xi ,Yi ).

• SAME ISSUE AS BEFORE
• ANSWER : Number of examples on average

n =


logK + log

(
1
δ

)
ε2


Same dependency on K , the only change is in the constant.

(Proof coming next)



Finite case (the "logK")

Proposition (Uniform bound for finite classes)
Consider a finite family H of classifiers. We have, for any δ > 0,
with probability at least 1 − δ :

∀h ∈ H , L(h) ≤ L̂n(h) +

√
log |H|+ log

(1
δ

)
2n

Proof relies on : Hoeffding’s inequality (see later) + union bound
(P(A ∪ B) ≤ P(A) + P(B))



Chapter 2
Probability inequalities



Historical perspective on probability
inequalities

• Kolmogorov, Smirnov (1936) : convergence of empirical cdf to
their expectations

• Dvoretsky, Kiefer, Wolfowitz (1956) : nonasymptotic version of
Kolmogorov-Smirnov

• Hoeffding (1963) : deviation inequality (average of IID from its
expectation

• Vapnik-Chervonenkis (1968) : equivalent of DKW for general
measures (not only 1D on half lines)

• Mc Diarmid (1981) : first concentration inequality
• Massart (1990) : exact constant in DKW
• Talagrand (1996) : new concentration inequalities

Topics : uniform law of large numbers (and central limit theorem),
empirical processes, large deviations, convex geometry, high dimensional
probability
Reference : book by Boucheron-Lugosi-Massart (2013)



Hoeffding’s lemma

Proposition
Consider Z a random variable such that :

• E(Z ) = 0
• Z ∈ [a, b] almost surely

Then, for any s > 0, we have :

E
(
esZ
)
≤ exp

(
s2(b − a)2

8

)

Interpretation : the Laplace transform of bounded random variables
exhibits subgaussian behavior.



Hoeffding’s inequality
Proposition

Consider Z1, . . . ,Zn IID over [0, 1] and Zn =
1
n

n∑
i=1

Zi . We then

have, for any t > 0

P{Zn − E(Z1) > t} ≤ exp(−2nt2)

and
P{Zn − E(Z1) < −t} ≤ exp(−2nt2)

Consequence : This bound implies the strong law of large numbers
for bounded random variables (by Borel-Cantelli lemma)

Proof technique : Chernoff’s bounding method

P

(
1
n

n∑
i=1

Zi − E(Z1) > t

)
≤ inf

s>0
exp

(
−nst + n logE(es(Z1−E(Z1)))

)



Coming next in Chapter 2

• Probability inequalities : from deviation to concentration

• Complexity measures

• Error bounds on ERM


