ENS PARIS-SACLAY Master 2 MVA

Introduction to Statistical Learning

Mid-term exam

Duration : 2h - Lecture notes not allowed

Reminder on main definitions and results

The indicator function I{2} takes the value 1 if  is true, and 0 otherwise.

If A denotes a set, then the notation |A| denotes the cardinality of A.

Union bound : P{AU B} < P{A} + P{B} where A and B are events.

IID means Independent and Identically Distributed.

Law of iterated expectation : E(U) = E(E(U | V')) where U, V are random variables.

_ 1 &
Hoeffing’s inequality : Consider Zi,...,Z, 1ID over [0,1] and Z, = ~ > Z;. We
n
=1

have, for any t > 0

P{Z, —E(Z)) > t} < exp(—2nt?)
and

P{Z, —E(Z1) < —t} < exp(—2nt?)

Subadditivity of supremum operator : sup(f + g) < sup(f) + sup(g) and sup(f) —
sup(g) < sup(f — g)-

McDiarmid inequality : let A be a function of n variables x1,...,x, satisfying the
uniform bounded differences assumption with constant c, ..., c : for any index 1,
sup  |h(z1, .y xn) — A1, T, T i1 )| S (1)

/
TlyeeyTmyTy

Then, we have that : for any ¢ > 0,

P{h(X1,...,X,) —E(h(X1,...,X,)) >t} <exp (-Zi) : (2)
and o2
P{(X1,...,Xy) —E(M(X1,..., X)) < —t} <exp <_n02> : (3)

The empirical Rademacher complexity of G wrt to the sample Z7' = {Z1,...,Z,} is

defined as :
z7 ) (4)

where €1,...,&, are IID Rademacher random variables, and they also are inde-
pendent of Z7'.

Bo(0.7) —E <sup IS gz

n
9€9 i1

The Rademacher complexity of G is defined as :

Ru(G,Z) = E(Ru(G, 2)) (5)
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— Growth function of a class C of sets of R? of order n :

C,n) = K,nC : CeC 6
WCn) = max |l H (6)

— VC dimension of a class C of sets of R? :

V(C) =max{neN : v(C,n)=2"} . (7)

Exercise 1 - Consider (X,Y") a random pair that models classification data with labels in
{0,1}.

1. For aclassifier g : R? — {0, 1}, define L(g) = P{Y # g(X)}. What is the minimizing
argument g* (called the Bayes classifier) of L(g) over all possible classifiers g 7 What
is the minimal value of L(g) over all possible classifiers g ?

2. Now define L.(g) = coP{Y # g(X),Y = 1}4+c1P{Y # g(X),Y = 0} where ¢g, 1 > 0.
What is the minimizing argument g} of L.(g) over all possible classifiers g 7 What is
the minimal value of L.(g) over all possible classifiers g ?

3. Using the same notations as in the previous question, we set cg = 1 and ¢; = A
where A € [0; +o00]. After this reparameterization of the binary classification problem
with asymmetric costs, we denote L. by Ly and we consider the sequence of binary
classification problems {min, Lx(g) : X € [0;4o00]} with sequence of solutions
{g% : X €[0;+0o0]}. Consider the decision rule h*(z) = [5° g5 (x) dA.

(a) What is the learning problem solved by h*?
(b) Which is the criterion that h* optimizes ? Give a proof of that fact.

(c) Is h* the unique optimal element for the performance criterion ?

Exercice 2 - We consider the model for classification data where X is a random vector
on R? and Y is a random variable taking values in {—1,+1}.

1. We consider the following problems for which the question is to compute the optimal
decision rule g*, h* or f*.

(a) R(g) = E((Y — g(X))Q) where g : RY — {-1,+1}
(b) R(h) = E((Y — h(X))z) where h : RT 5 R
(c) A(f) = E(logy(1 + e /X)) where f : R? — RU {—o0, +oo} and logy(u) =
log(u)/log(2) for any u > 0.
Explain why such criteria are relevant for the binary classification problem.
2. We now consider the case of 1(c).
(a) Determine the function H such that : A(f*) = E(H(n(X))).
(b) Plot H and state its main properties. Compare (u — 1/2)? and (1 — H(u)).

(c) Consider L(g) = P{Y # ¢g(X)} and L* = inf, L(g). What upper bound can be
given on the quantity L(sgn(f)) — L* in terms of A(f) — A(f*)?
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Exercise 3 - Let G be a class of {0, 1}-valued functions over R%. Let (X1,Y1),..., (X, Yy)
an IID sample of classification data in R? x {0,1}. Set § > 0.

1. Show that, with probability at least 1 — ¢ :

Rn(G.X) < Ru(9,X) + 10g§1/5>

n

2. Set F ={(z,y) » H{y #g(z)} : g € G} and relate R, (F,(X,Y)) to Rn(G, X).

3. Consider the binary classification problem. Given a class G of candidate classifiers,
what is the strategy that selects a classifier out of G and for which performance
can be explained by a control of the Rademacher average ? Provide a mathematical
argument for performance prediction of the learning strategy.

Exercise 4 - Consider the two following types of sets of R¢, with d > 1 :
— C(0,b) = {x e R? : ¢z < b}
— S(j,a,0) = {z = (zV,...,zD) e R? : az\) < b}
where § € R4, b€ R, a € {—1,+1} and j € {1,...,d}.
We define the two collections :
— I ={C(0,b) : 6 R bR}
— Ty ={5(,a,b) : ac{-1,+1},5j€{1,...,d},be R}

We propose to show that V(I'z) < V(I'1) when d > dy, for some dj :
1. Describe what happens in the case d = 1. What does it imply for dy 7
2. Prove a tight lower bound on V (I'y).

3. Given a set K, of n points {x1, ..., x,} in R? what is the maximal number of subsets
of K,, obtained as K,, NS, where S € I's.

4. Give an upper bound for V(I'y) and conclude.
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