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Introduction to Statistical Learning

Mid-term exam

Duration : 2h - Lecture notes not allowed

Reminder on main definitions and results

— The indicator function I{Ω} takes the value 1 if Ω is true, and 0 otherwise.

— If A denotes a set, then the notation |A| denotes the cardinality of A.

— Union bound : P{A ∪B} ≤ P{A}+ P{B} where A and B are events.

— IID means Independent and Identically Distributed.

— Law of iterated expectation : E(U) = E(E(U | V )) where U , V are random variables.

— Hoeffing’s inequality : Consider Z1, . . . , Zn IID over [0, 1] and Zn =
1

n

n∑
i=1

Zi. We

have, for any t > 0
P{Zn − E(Z1) > t} ≤ exp(−2nt2)

and
P{Zn − E(Z1) < −t} ≤ exp(−2nt2)

— Subadditivity of supremum operator : sup(f + g) ≤ sup(f) + sup(g) and sup(f) −
sup(g) ≤ sup(f − g).

— McDiarmid inequality : let h be a function of n variables x1, . . . , xn satisfying the
uniform bounded differences assumption with constant c, . . . , c : for any index i,

sup
x1,...,xn,x′

i

|h(x1, . . . , xn)− h(x1, . . . , xi−1, x
′
i, xi+1 . . . , xn)| ≤ c . (1)

Then, we have that : for any t > 0,

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≥ t} ≤ exp

(
− 2t2

nc2

)
. (2)

and

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≤ −t} ≤ exp

(
− 2t2

nc2

)
. (3)

— The empirical Rademacher complexity of G wrt to the sample Zn
1 = {Z1, . . . , Zn} is

defined as :

R̂n(G, Z) = E

(
sup
g∈G

1

n

n∑
i=1

εig(Zi)

∣∣∣∣∣Zn
1

)
(4)

where ε1, . . . , εn are IID Rademacher random variables, and they also are inde-
pendent of Zn

1 .

— The Rademacher complexity of G is defined as :

Rn(G, Z) = E
(
R̂n(G, Z)

)
(5)
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— Growth function of a class C of sets of Rd of order n :

γ(C, n) = max
Kn={x1,...,xn}⊂Rd

|{Kn ∩ C : C ∈ C}| (6)

— VC dimension of a class C of sets of Rd :

V (C) = max {n ∈ N : γ(C, n) = 2n} . (7)

Exercise 1 - Consider (X,Y ) a random pair that models classification data with labels in
{0, 1}.

1. For a classifier g : Rd → {0, 1}, define L(g) = P{Y ̸= g(X)}. What is the minimizing
argument g∗ (called the Bayes classifier) of L(g) over all possible classifiers g ? What
is the minimal value of L(g) over all possible classifiers g ?

2. Now define Lc(g) = c0P{Y ̸= g(X), Y = 1}+c1P{Y ̸= g(X), Y = 0} where c0, c1 > 0.
What is the minimizing argument g∗c of Lc(g) over all possible classifiers g ? What is
the minimal value of Lc(g) over all possible classifiers g ?

3. Using the same notations as in the previous question, we set c0 = 1 and c1 = λ
where λ ∈ [0; +∞]. After this reparameterization of the binary classification problem
with asymmetric costs, we denote Lc by Lλ and we consider the sequence of binary
classification problems {ming Lλ(g) : λ ∈ [0; +∞]} with sequence of solutions
{g∗λ : λ ∈ [0; +∞]}. Consider the decision rule h∗(x) =

∫∞
0 g∗λ(x) dλ.

(a) What is the learning problem solved by h∗ ?

(b) Which is the criterion that h∗ optimizes ? Give a proof of that fact.

(c) Is h∗ the unique optimal element for the performance criterion ?

Exercice 2 - We consider the model for classification data where X is a random vector
on Rd and Y is a random variable taking values in {−1,+1}.

1. We consider the following problems for which the question is to compute the optimal
decision rule g∗, h∗ or f∗.

(a) R(g) = E
(
(Y − g(X))2

)
where g : Rd → {−1,+1}

(b) R(h) = E
(
(Y − h(X))2

)
where h : Rd → R

(c) A(f) = E
(
log2(1 + e−Y f(X))

)
where f : Rd → R ∪ {−∞,+∞} and log2(u) =

log(u)/ log(2) for any u > 0.

Explain why such criteria are relevant for the binary classification problem.

2. We now consider the case of 1(c).

(a) Determine the function H such that : A(f∗) = E(H(η(X))).

(b) Plot H and state its main properties. Compare (u− 1/2)2 and (1−H(u)).

(c) Consider L(g) = P{Y ̸= g(X)} and L∗ = infg L(g). What upper bound can be
given on the quantity L(sgn(f))− L∗ in terms of A(f)−A(f∗) ?
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Exercise 3 - Let G be a class of {0, 1}-valued functions over Rd. Let (X1, Y1), . . . , (Xn, Yn)
an IID sample of classification data in Rd × {0, 1}. Set δ > 0.

1. Show that, with probability at least 1− δ :

Rn(G, X) ≤ R̂n(G, X) +

√
log(1/δ)

2n

2. Set F = {(x, y) 7→ I{y ̸= g(x)} : g ∈ G} and relate Rn

(
F , (X,Y )

)
to Rn(G, X).

3. Consider the binary classification problem. Given a class G of candidate classifiers,
what is the strategy that selects a classifier out of G and for which performance
can be explained by a control of the Rademacher average ? Provide a mathematical
argument for performance prediction of the learning strategy.

Exercise 4 - Consider the two following types of sets of Rd, with d ≥ 1 :

— C(θ, b) = {x ∈ Rd : θTx ≤ b}
— S(j, a, b) = {x = (x(1), . . . , x(d)) ∈ Rd : ax(j) ≤ b}

where θ ∈ Rd, b ∈ R, a ∈ {−1,+1} and j ∈ {1, . . . , d}.

We define the two collections :

— Γ1 = {C(θ, b) : θ ∈ Rd, b ∈ R}
— Γ2 = {S(j, a, b) : a ∈ {−1,+1}, j ∈ {1, . . . , d}, b ∈ R}

We propose to show that V (Γ2) < V (Γ1) when d ≥ d0, for some d0 :

1. Describe what happens in the case d = 1. What does it imply for d0 ?

2. Prove a tight lower bound on V (Γ1).

3. Given a set Kn of n points {x1, . . . , xn} in Rd, what is the maximal number of subsets
of Kn obtained as Kn ∩ S, where S ∈ Γ2.

4. Give an upper bound for V (Γ2) and conclude.
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