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Introduction to Statistical Learning

Final exam (3 pages)

Duration : 2h00 - Lecture notes allowed

Notations

— Indicator function. The indicator function I{Ω} takes the value 1 if Ω is true, and 0
otherwise.

— IID. Independent and Identically Distributed.

— Empirical Rademacher average. Consider an IID sample Zn
1 = (Z1, . . . , Zn) and let

σ1, . . . , σn be an IID sample of Rademacher random variables (P{σ1 = +1} = P{σ1 =
−1} = 1/2) independent of Zn

1 . Given a class T of functions, we denote its empirical
Rademacher average by :

R̂n(T ) = E

(
sup
t∈T

1

n

n∑
i=1

σit(Zi) | Zn
1

)

— Kernel function - definitions and properties. Let k : Rd × Rd → R be a positive
definite and symmetric kernel function. We recall that k has the property that there
exist : (i) a Hilbert space Hk equipped with scalar product < ·, · >k and norm ∥ · ∥k
and (ii) a feature mapping Φ : Rd → Hk such that k(x, x′) =< Φ(x),Φ(x′) >
and k(x, x) = ∥Φ(x)∥k for any x, x′. Given a sample X1, . . . , Xn, we denote by
K =

(
k(Xi, Xj)

)
1≤i,j≤n

the Gram matrix induced by the kernel function k.

— Subdifferentiability, strong convexity. Let F be a closed and convex class of functions
which is a subset of a Hilbert class H with scalar product < ·, · > and norm ∥ · ∥.
Consider a function ϕ : F → R.
— A vector g ∈ H is a subgradient of ϕ at f ∈ F if, for any f ′ ∈ F , we have :

ϕ(f ′) ≥ ϕ(f)+ < g, f ′ − f >

— The function ϕ is said to be subdifferentiable at f if the set ∂ϕ(f) of all subgra-
dients of ϕ at f is not empty.

— The function ϕ is said to be α-strongly convex if ϕ is convex, subdifferentiable
and, for any f, f ′ ∈ F , and g ∈ ∂ϕ(f), we have :

ϕ(f ′) ≥ ϕ(f)+ < g, f ′ − f > +
α

2
∥f − f ′∥2 .
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Exercise 1 - Consider an IID sample X1, . . . , Xn of observations over the space X and F0

a set of real-valued functions over X that includes the zero function. Assume ψ : R → R
is k-Lispchitz and define, for fixed positive real numbers V and B :

— the class F0 is a linear perceptron with bounded weights : F0 = {x 7→ wTx : ∥w∥1 ≤
B}

— a one layer network as : F1 = {x 7→ ψ(v +
∑m

j=1wjfj(x)) : |v| ≤ V, ∥w∥1 ≤ B, fj ∈
F0}

— a p-layer network as (iterative definition with fixed layer size) : Fp = {x 7→ ψ(v +∑m
j=1wjfj(x)) : |v| ≤ V, ∥w∥1 ≤ B, fj ∈ Fp−1}

Prove the following upper bounds on the empirical Rademacher average :

1. R̂n(F1) ≤ k

(
V√
n
+ 2BR̂n(F0)

)
.

2. We assume now that X is the ℓ∞ unit ball : X = {x ∈ Rd : ∥x∥∞ ≤ 1} and show
that :

R̂n(F0) ≤
B
√

2 ln(2d)√
n

3. Assume in addition that ψ(−u) = −ψ(u) and k = 1 then show that on X = {x ∈
Rd, ∥x∥∞ ≤ 1} :

R̂n(Fp) ≤
1√
n

(
Bp+1

√
2 ln(2d) + V

p−1∑
l=0

Bl

)
.

Exercise 2 - Consider the setup of preference learning where we observe an IID sample of
triples (X1, X

′
1, Y1), . . . , (Xn, X

′
n, Yn). The probabilistic model assumes that, for each i, the

triple (Xi, X
′
i, Yi) is such that Xi, X

′
i are IID random vectors over Rd and Yi is a random

variable over {−1, 0,+1}. Consider the margin loss function as φρ(u) = (1− (u/ρ))I{0 <
u ≤ ρ}+ I{u ≤ 0} for any real number u. We define the ranking error of a preference rule
g : Rd → {−1, 0,+1} as :

LR(g) = P{Y ̸= 0, Y · (g(X ′)− g(X)) ≤ 0}

and the empirical margin ranking error as :

L̂R
n,ρ(g) =

1

n

n∑
i=1

φρ(Yi · (g(X ′
i)− g(Xi)) ,

Now consider a class G of preference rules and define :

G̃ = {(x, x′, y) 7→ y(g(x′)− g(x)) : g ∈ G} .

1. Provide an upper bound of the empirical Rademacher average of G̃ in terms of the
empirical Rademacher average of G.

2. Which inequality relates the empirical Rademacher average of the loss class φρ ◦ G̃
to the empirical Rademacher average of G̃ ? Provide a proof of this inequality.
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3. Show that, for any δ ∈ (0, 1), we have, with probability at least 1− δ : for any g ∈ G

E(φρ(Y · (g(X ′)− g(X))) ≤ L̂R
n,ρ(g) + c1R̂n(φρ ◦ G̃) + c2(n, δ)

for some c1 and c2(n, δ) that will have to be given explicitly.

4. Deduce from the previous question a margin error bound for LR(g) that holds with
large probability for any g ∈ G and which involves the empirical ranking error of g
over the sample and the complexity of G.

5. Specify the previous result to the case of a kernel class of functions with G = Fk,M =
{x 7→< w,Φ(x) >k : w ∈ H, ∥w∥k ≤ M} as defined in the notations for a kernel
function k.

Problem - Let Z,Z1, . . . , Zn, Z
′
1, . . . , Z

′
n be IID random variables with distribution P

over Z and F be a closed and convex class of functions which is a subset of a Hilbert
class H with norm ∥ · ∥. Let ℓ : F × Z → R be a loss function to assess the quality of
f ∈ F on a sample Z. We denote by : (i) L(f) = E

(
ℓ(f, Z)

)
the expected error of element

f on average, (ii) L̂n(f) =
1
n

∑n
i=1 ℓ(f, Zi) the empirical risk over the sample Z1, . . . , Zn,

(iii) L̄F = inff∈F L(f). We consider a learning algorithm A : Zn → F which based on

the sample Z1, . . . , Zn outputs a random function f̂n = A(Z1, . . . , Zn). We want to give
an estimate of the excess of risk L(f̂n) − L̄F which holds with high probability, where
L(f̂n) = E

(
ℓ(f̂n, Z) | Z1, . . . , Zn

)
.

Part A. We consider here the algorithm A such that A(Z1, . . . , Zn) = argminf∈F L̂n(f).
We assume that f 7→ ℓ(f, z) is α-strongly convex and L-Lipschitz.

1. Prove that f 7→ 1
n (ℓ(f, Z ′

i)− ℓ(f, Zi)) is Lipschitz where the Lipschitz constant will
be provided.

2. Assume that φ is α-strongly convex and ψ L-Lipschitz over F . Show that there is a
unique f∗ that minimizes φ and assume that f̃ is a minimizer of φ+ψ over F . Show
that ∥f∗ − f̃∥ ≤ λ(α,L, n) where λ will be computed.

3. Denote by f̂
(i)
n the minimizer of the empirical risk over the sample Z1, . . ., Zi−1, Z

′
i,

Zi+1, . . ., Zn. Provide a bound of
∣∣∣ℓ(f̂n, z)− ℓ(f̂

(i)
n , z)

∣∣∣ which holds for any z ∈ Z.

4. Derive a bound on the quantity E
(
L(f̂n)− L̂n(f̂n)

)
and then, for E

(
L(f̂n)− L̄F

)
.

5. Conclude on a probabilistic bound for L(f̂n) − L̄F which holds with probability at
least 1− δ.

Part B. We assume here that F is convex and bounded, i.e. for any f ∈ F , we have
∥f∥ ≤ M for some M < ∞. Fix λ > 0. We consider here the algorithm Aβ such that

f̂n,β = Aβ(Z1, . . . , Zn) = argminf∈F

{
L̂n(f) +

β
2 ∥f∥

2
}
. We assume here that f 7→ ℓ(f, z)

is simply convex and L-Lipschitz.

1. Show that f 7→ ℓ(f, z) + β
2 ∥f∥

2 is strongly convex and Lipschitz with constants to

be determined. Use part A to derive a bound on L(f̂n,β) − inff∈F{L(f) + β
2 ∥f∥

2}
which holds with probability at least 1− δ.

2. Optimize the bound with respect to β.
Hint : use β = κ(M,L)√

n
with a properly tuned κ.
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