ENS PARIS-SACLAY Master 2 MVA

Introduction to Statistical Learning
Final exam (3 pages)

Duration : 2h00 - Lecture notes allowed

Notations

Indicator function. The indicator function I{Q2} takes the value 1 if  is true, and 0
otherwise.

IID. Independent and Identically Distributed.

Empirical Rademacher average. Consider an IID sample Z" = (Z1, ..., Z,) and let
o1, ...,0p be an IID sample of Rademacher random variables (P{o; = +1} = P{o; =
—1} = 1/2) independent of Z7'. Given a class 7 of functions, we denote its empirical
Rademacher average by :

Kernel function - definitions and properties. Let £ : R? x R — R be a positive
definite and symmetric kernel function. We recall that k has the property that there
exist : (i) a Hilbert space Hj equipped with scalar product < -,- >; and norm || - |x
and (ii) a feature mapping ® : RY — H; such that k(z,2') =< ®(z), ®(z') >
and k(z,z) = ||®(x)||x for any z, 2’. Given a sample Xi,...,X,, we denote by
K = (k(X;, Xj))1<i,j<n the Gram matrix induced by the kernel function k.

Subdifferentiability, strong convexity. Let F be a closed and convex class of functions
which is a subset of a Hilbert class H with scalar product < -,- > and norm || - ||.
Consider a function ¢ : F — R.

— A vector g € H is a subgradient of ¢ at f € F if, for any f' € F, we have :
o(f) z )+ <g f = f>

— The function ¢ is said to be subdifferentiable at f if the set O¢p(f) of all subgra-
dients of ¢ at f is not empty.

— The function ¢ is said to be a-strongly convez if ¢ is convex, subdifferentiable
and, for any f, f' € F, and g € 9¢(f), we have :

o) 2 o)+ < 9. f = > +50F = I
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Exercise 1 - Consider an IID sample X7, ..., X,, of observations over the space X and Fy
a set of real-valued functions over X that includes the zero function. Assume ¢ : R — R
is k-Lispchitz and define, for fixed positive real numbers V' and B :

— the class Fy is a linear perceptron with bounded weights : 7o = {z +— wlz : |Jw|; <
B}
— a one layer network as : i = {z — (v + 27 w;ifi(z)) v < Viwlli < B, fj €
Fo}
— a p-layer network as (iterative definition with fixed layer size) : F, = {z — (v +
Yoy wifi(@) |l < Viflwl < B, fj € Fp-1}
Prove the following upper bounds on the empirical Rademacher average :

A

L AR < b (- 28R )

2. We assume now that X is the £, unit ball : X = {x € R? : ||2]|o < 1} and show

that :
fo(Fy) < Bv2In(2d) 2;;(2‘{)

3. Assume in addition that ¢(—u) = —t(u) and k& = 1 then show that on X = {z €
RY, J|zflo <1} :

n

p—1
Ru(Fp) < ! (Bp+1\/2ln(2d)+VZBl> :
=0

Bl

Exercise 2 - Consider the setup of preference learning where we observe an IID sample of
triples (X1, X1,Y1), ..., (Xn, X}, Yy). The probabilistic model assumes that, for each 4, the
triple (Xj, X;,Y;) is such that X;, X] are IID random vectors over R? and Y is a random
variable over {—1,0,+1}. Consider the margin loss function as ¢,(u) = (1 — (u/p))I{0 <
u < p}+I{u < 0} for any real number u. We define the ranking error of a preference rule
g:R* = {~1,0,+1} as :

L¥(g) =P{Y #0, Y- (9(X') — g(X)) <0}

and the empirical margin ranking error as :
TR IEN /
Ly o(9) = =D ep(Yi (9(X]) — 9(X)) |
i=1

Now consider a class G of preference rules and define :

g ={(z,2",y) = y(g(z') — g(x)) : g€G}.

1. Provide an upper bound of the empirical Rademacher average of G in terms of the
empirical Rademacher average of G.

2. Which inequality relates the empirical Rademacher average of the loss class ¢, o G
to the empirical Rademacher average of G 7 Provide a proof of this inequality.
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3. Show that, for any § € (0, 1), we have, with probability at least 1 — ¢ : for any g € G
E(p(Y - (9(X") = 9(X)) < L (9) + c1Rn(, © G) + c2(n, 6)

for some ¢; and ca(n, d) that will have to be given explicitly.

4. Deduce from the previous question a margin error bound for L(g) that holds with
large probability for any g € G and which involves the empirical ranking error of g
over the sample and the complexity of G.

5. Specify the previous result to the case of a kernel class of functions with G = Fj, pr =
{r < w,®(x) > : w e H,||w|r < M} as defined in the notations for a kernel
function k.

Problem - Let Z,Z1,...,2,,2},...,Z), be IID random variables with distribution P
over Z and F be a closed and convex class of functions which is a subset of a Hilbert

class H with norm || - ||. Let £ : F x Z — R be a loss function to assess the quality of
f € F on a sample Z. We denote by : (i) L(f) = E(f(f, Z)) the expected error of element
f on average, (ii) Ln(f) = LS™ U(f.Z;) the empirical risk over the sample Z1, ..., Z,,
(iii) Ly = infyer L(f). We consider a learning algorithm A : Z™ — F which based on
the sample Z1,. .., Z, outputs a random function f, = A(Zy,...,Zy,). We want to give
an estimate of the excess of risk L( fn) — L7 which holds with high probability, where

L(fo) =E(l(fn. 2) | Z1,...,Z2).
Part A. We consider here the algorithm A such that A(Z1,...,Z,) = argmin;.r Ln(f).
We assume that f — £(f,z) is a-strongly convex and L-Lipschitz.

1. Prove that f +— 1 (¢(f, Z]) — €(f, Z;)) is Lipschitz where the Lipschitz constant will
be provided.

2. Assume that ¢ is a-strongly convex and ¢ L-Lipschitz over F. Show that there is a
unique f* that minimizes ¢ and assume that f is a minimizer of p 4 over F. Show
that || f* — f|| < AMa, L,n) where A will be computed.

3. Denote by fy(f) the minimizer of the empirical risk over the sample Z1, ..., Z;_1, Z],
Zii1y + vy Zy. Provide a bound of ’E(fn, z) — E(f,sz), 2)

which holds for any z € Z.

4. Derive a bound on the quantity E(L(fn) - ﬁn(fn)) and then, for E(L(fn) —Ly).

5. Conclude on a probabilistic bound for L( fn) — L7 which holds with probability at
least 1 — 4.

Part B. We assume here that F is convex and bounded, i.e. for any f € F, we have
|lfll < M for some M < oo. Fix A > 0. We consider here the algorithm Ag such that
fog = As(Z1,..., Zy) = arg min ;¢ » {i}n(f) + §‘|f“2} We assume here that f — £(f, 2)
is simply convex and L-Lipschitz.
1. Show that f — £(f,z) + §||f||2 is strongly convex anfi Lipschitz with constants to
be determined. Use part A to derive a bound on L(f, 3) — inf e 7{L(f) + ngHZ}
which holds with probability at least 1 — 4.

2. Optimize the bound with respect to .
Hint : use g = ”(L\fL) with a properly tuned «.

n
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