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Introduction to Statistical Learning

Mid-term exam

Duration : 2h - Lecture notes not allowed

Reminder on main definitions and results

— The indicator function I{Ω} takes the value 1 if Ω is true, and 0 otherwise.

— Union bound : P{A ∪B} ≤ P{A}+ P{B} where A and B are events.

— IID means Independent and Identically Distributed.

— Law of iterated expectation : E(U) = E(E(U | V )) where U , V are random variables.

— Subadditivity of supremum operator : sup(f + g) ≤ sup(f) + sup(g) and sup(f) −
sup(g) ≤ sup(f − g).

— McDiarmid inequality : let h be a function of n variables x1, . . . , xn satisfying the
uniform bounded differences assumption with constant c, . . . , c : for any index i,

sup
x1,...,xn,x′

i

|h(x1, . . . , xn)− h(x1, . . . , xi−1, x
′
i, xi+1 . . . , xn)| ≤ c . (1)

Then, we have that : for any t > 0,

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≥ t} ≤ exp

(
− 2t2

nc2

)
. (2)

and

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≤ −t} ≤ exp

(
− 2t2

nc2

)
. (3)
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Exercise 1 - Consider the binary classification model where the random pair (X,Y ) has
distribution P over R+ × {0, 1} and :

— the marginal distribution of X over R+ is denoted PX

— the conditional distribution of Y given X = x is a Bernoulli distribution with para-

meter η(x) =
x

x+ θ
, for any x ∈ R+, and for fixed θ > 0.

1. Assume that the marginal distribution follows a uniform distribution PX = U([0, αθ])
over R+ with α > 1.

(a) Find the minimizing argument g∗ of L(g) = P(Y ̸= g(X)) over all measurable
classifiers g : R+ → {0, 1}.

(b) Compute L∗ = L(g∗) in the case where the marginal distribution PX = U([0, αθ])
with α > 1.

2. Now assume we have the following IID data (X1, Y1), . . . , (Xn, Yn) available.

(a) Assuming PX as before (with α fixed), propose an empirical estimate θ̂ of θ
based only on X1, . . . , Xn.

(b) For general PX over R+ (unspecified, not necessarily uniformly distributed, and
not depending on θ), what is a possible empirical estimate θ̂ for θ ?

(c) Denote by η̂ the plugin estimate of η based on θ̂, what is the plugin classifier ĝ
based on η̂ ? Find a bound on L(ĝ)− L∗ depending on the quantity E(|η̂(X)−
η(X)|).

Exercice 2 - Find the optimal elements g∗ and L∗ = L(g∗) in the following cases of error
measures with binary classification data :

1. Set ω ∈ (0, 1), and consider L(g) = Lω(g) such that

Lω(g) = 2E
(
(1− ω)I{Y = +1}I{g(X) = −1}+ ωI{Y = −1}I{g(X) = +1}

)
.

2. Set u ∈ (0, 1), and consider L(g) = P(Y ̸= g(X)) with the constraint

P(g(X) = 1) = u .
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Exercice 3 - We consider the model for classification data where X is a random vector
on Rd and Y is a random variable taking values in {−1,+1}. We denote by η(x) = P{Y =
+1 | X = x} the posterior probability.

1. Find the optimal decision rule f∗ which minimizes the criterion A(f) over the class
of measurable functions f : Rd → R ∪ {−∞,+∞} in the following cases :

(a) Criterion to minimize : A(f) = E exp(−Y f(X))).

(b) Criterion to minimize : A(f) = E
(
log2(1 + exp(−Y f(X)))

)
.

2. Consider L(f) = P(Y · f(X) < 0) for any measurable real-valued function f and
A(f) a surrogate criterion such as those introduced in Questions 1.(a) and 1.(b).

(a) What is the relationship between minimizing L(f) and A(f) ?

(b) Given a sample (X1, Y1), . . . , (Xn, Yn), provide a numerically plausible procedure
to approximate L(f∗). A sketch of proof is expected.

Exercise 4 - Let F a class of functions from Rd to [−B,B], with B > 0. Consider random
sign variables ε1, . . . , εn IID such that P{ε1 = −1} = P{ε1 = +1} = 1/2. Consider the
empirical Rademacher complexity defined as

R̂n(F) =
1

n
E

(
sup
f∈F

n∑
i=1

εif(Xi)

∣∣∣∣∣X1, . . . , Xn

)

and the average Rademacher complexity as :

R̄n(F) =
1

n
E

(
sup
f∈F

n∑
i=1

εif(Xi)

)

1. Show that for fixed F , the empirical Rademacher complexity seen as a function of
X1, . . . , Xn satisfies the bounded differences condition.

2. Provide an upper bound on the average Rademacher complexity in terms of the
empirical Rademacher complexity that holds with high probability.

3. How the Rademacher average can be applied to provide theoretical guarantees for
the consistency of Empirical Risk Minimization to solve the classification problem ?
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