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Machine Learning Methods
Optimization is central

Some popular examples :

• Sparse linear models −→ convex optimization (gradient
methods)

• Kernel ridge regression −→ convex optimization (quadratic
optimization)

• Deep learning −→ nonconvex optimization (stochastic
gradient descent) + implicit regularization (tricks)

At the end of the day :

loss+training data+functional class+optimization→random rule f̂n



Main theoretical objectives of the course

• Take a well-known ML algorithm which operates in F : it
produces a (random) sequence of decision rules (f̂n)n≥1 in F .
Then show :

• Convergence of estimation error :

L(f̂n) → inf
F

L almost surely as n → ∞ ,

• Upper bounds : with probability at least 1− δ, there exists
some constant c such that :

L(f̂n)− inf
F

L ≤ C (F , n) + c

√
log(1/δ)

n
,

where C (F , n)) = O(1/
√
n) after processing some

complexity/stability measure



Key principle to lower bias :
Regularized optimization

• Objective : aim at consistency L(f̂n) → L∗ almost surely as
n → ∞.

• Take F a very large space and de�ne a proper penalty term :

Cn(f ) = L̂n(f )︸ ︷︷ ︸
Training error

+λ pen(f , n)︸ ︷︷ ︸
Regularization

• Example : ridge regression where f (x) = θT x :

L̂n(f ) =
1
n

∑n
i=1(Yi − θTXi )

2 and pen(f , n) = 1
n∥θ∥

2
2

• The penalty grows with the complexity of f and vanishes when
n → ∞



Overview of Chapter 3

1. Consistency of local methods :

a. k-Nearest Neighbors
b. (decision trees)
c. (local averaging)

2. Consistency of global methods

a. Support Vector Machines
b. Boosting
c. Neural networks

3. Consistency of ensemble methods

+ Bagging, Random Forests



1. Local methods

The example of k-Nearest neighbors (k-NN)



Problem considered
(Multiclass) Classi�cation

• Given :
• Consider a sample of classi�cation data

(X1,Y1)...(Xn,Yn)

where Xi ∈ Rd vector of independent variables,
Yi ∈ {1, . . . ,C} the label

• Want :
• to predict the label y at any position x



k-Nearest Neighbor (1/4)
Principle of the k-NN algorithm

1 Compute distances
• Compute pairwise distances d(x ,Xi ) for all i = 1, . . . , n

2 Sort training data
• Sort the data points from the closest X(1) to the farthest X(n)

(i.e. d(x ,X(1)) ≤ . . . ≤ d(x ,X(n))

3 Prediction ĥ(x , k) = Majority vote of the k-NN
• Consider the labels Y(1), . . . ,Y(k) of the k closest points to x

and take the majority vote
ĥ(x , k) = argmaxc{

∑k
l=1

I{Y(l) = c}}



k-Nearest Neighbor (2/4)
Principle of the k-NN algorithm



Nearest Neighbors (3/4)
Hyperparameters

• Choice of a distance d between points of Rd

• Number k of Nearest Neighbors, estimated by
cross-validation :



k-Nearest Neighbor (4/4)
Theory

• Recall : classi�cation error L(h) = P(Y ̸= h(X )) and
L∗ = inf L

• Consistency result :

EL(ĥ(·, kn)) → L∗

under the condition : kn → ∞ and kn/n → 0 when n → ∞
• No closed-form solution for optimal kn (in practice, we use
cross-validation)

• No theoretical clue on the choice of the distance (related to
data representation and the physics of the problem)



Interlude - Some tools

De�nition of Margin Loss, Contraction Principle,
Concentration Inequality



Margin loss

• Fix ρ > 0

• The margin loss is de�ned, for any u, v ∈ R, as :
ℓ(u, v) = mρ(uv) where

mρ(t) =



0 if ρ ≤ t

1− t

ρ
if 0 ≤ t ≤ ρ

1 if t ≤ 0

• Empirical margin error on a sample Dn :

L̂n,ρ(f ) =
1

n

n∑
i=1

mρ(Yi f (Xi ))



Contraction principle

Theorem. (Ledoux, Talagrand (1991))

Consider ψ : R → R a Lipschitz function with constant κ

Then, for any class F of real-valued functions, we have :

R̂n(ψ ◦ F) ≤ κR̂n(F)



Reminder from Chapter 2
Uniform bound with Rademacher average

Proposition.

Consider F a class of functions from Z to [0, 1]

Then, with probability at least 1− δ :

sup
f ∈F

(
E
(
f (Z1)

)
− 1

n

n∑
i=1

f (Zi )

)
≤ 2Rn(F) +

√
log(1/δ)

2n

and

sup
f ∈F

(
E
(
f (Z1)

)
− 1

n

n∑
i=1

f (Zi )

)
≤ 2R̂n(F) + 3

√
log(2/δ)

2n



2. Consistency of global methods
a. Support Vector Machines



Principle of Support Vector Machines

• Kernel k : Rd × Rd → R symmetric and positive

• Reproducing Kernel Hilbert Space (Hk , ⟨·, ·⟩) corresponding to
kernel k .

• Class of functions/classi�ers : g = sgn(h) where

h ∈ H(X ) ⊜

{
h =

n∑
i=1

αik(Xi , ·) : α1, . . . , αn ∈ R

}
⊂ Hk

• Optimization problem : set λ > 0

ĥλ = argmin
Hk

{
n∑

i=1

(1− Yih(Xi ))+ + λ∥h∥k

}



RKHS theory in a nutshell

Theorem.
Let k : Rd × Rd → R a kernel that is symmetric and positive.

Then, there exists :

• a Hilbert space (Hk , ⟨·, ·⟩), called the Reproducing Kernel

Hilbert Space

• a mapping Φ : Rd → Hk such that :

∀u, v ∈ Rd , k(u, v) = ⟨Φ(u),Φ(v)⟩

Plus, we have the reproducing property :

∀h ∈ Hk , ∀u ∈ Rd , h(u) = ⟨h, k(u, ·)⟩

and ∥h∥k =
√
⟨h, h⟩



Key property of SVM

• By the representer's theorem (admitted), it su�ces to
minimize over H(X ) instead of Hk

• Note that, if h ∈ H(X ) :

∥h∥2k =
∑
i ,j

αiαjk(Xi ,Xj)



Global methods (e.g. CRM)

• Based on empirical minimization of error functionals

• Example in the case of soft classi�ers h : Rd → R

• Convex risk minimization, with φ positive convex cost
function :

Â(h) =
1

n

n∑
i=1

φ(−Yih(Xi ))

• Note that if h ∈ span(H) with H some class of classi�ers,
then the minimization problem is convex.

• Main issue : complexity of the class H of candidate decision
rules



Rademacher complexity of SVM

Proposition.

Let X1, . . . ,Xn be an n-sample in Rd , and denote by K the Gram

matrix with coe�cients k(Xi ,Xj), 1 ≤ i , j ≤ n.

Introduce the subspace of functions with bounded RKHS norm :

FM = {h ∈ Hk : ∥h∥k ≤ M}

We then have :

R̂n(FM) ≤
M
√

trace (K )

n

In addition, if we have : k(Xi ,Xi ) ≤ R2 for 1 ≤ i ≤ n, then

R̂n(FM) ≤ MR√
n



Margin bounds for SVM classi�cation

Theorem. (Fixed margin)

Let Hk the RKHS with kernel k .

Fix ρ ∈ (0, 1), and δ > 0. Then with probability at least 1− δ, we
have, for any SVM classi�er g :

L(g) ≤ L̂n,ρ(g) + 2

(
MR

ρ
√
n

)
+

√
log(1/δ)

2n

and

L(g) ≤ L̂n,ρ(g) + 2

(
M
√

trace (K )

ρn

)
+ 3

√
log(2/δ)

2n


