école
CENTRE normale K
BORELLI supérieure universite
paris—saclay PARIS-SACLAY

Introduction to Statistical Learning

Nicolas Vayatis

Lecture # 5 - Statistical analysis of mainstream ML algorithms
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Machine Learning Methods
Optimization is central

Some popular examples :

® Sparse linear models — convex optimization (gradient
methods)

e Kernel ridge regression — convex optimization (quadratic
optimization)

® Deep learning — nonconvex optimization (stochastic
gradient descent) + implicit regularization (tricks)

At the end of the day :

loss+training data+functional class+optimization—random rule f,



Main theoretical objectives of the course

® Take a well-known ML algorithm which operates in F : it
produces a (random) sequence of decision rules (f;),>1 in F.
Then show :

e Convergence of estimation error :

L(f,) — igEfL almost surely as n — oo

e Upper bounds : with probability at least 1 — §, there exists
some constant ¢ such that :

L(f,,)—igthg C(F,n)+c log(1/9) :

n

where C(F, n)) = O(1/+/n) after processing some
complexity/stability measure



Key principle to lower bias :
Regularized optimization

Objective : aim at consistency L(?,,) — L* almost surely as
n — oo.

Take F a very large space and define a proper penalty term :

Ca(f) = Ln(f) +X pen(f,n)
Training error Regularization

Example : ridge regression where f(x) =67 x :
La(f) = 5 71 (Yi — 07 X:)? and pen(f, n) = 11013

n

The penalty grows with the complexity of f and vanishes when
n— oo



Overview of Chapter 3

1. Consistency of local methods :

a. k-Nearest Neighbors
b. (decision trees)
c. (local averaging)

2. Consistency of global methods

a. Support Vector Machines
b. Boosting
c. Neural networks

3. Consistency of ensemble methods
+ Bagging, Random Forests



1. Local methods

The example of k-Nearest neighbors (k-NN)



Problem considered
(Multiclass) Classification

® Given :
® Consider a sample of classification data

(X1, Y1)...( Xy Ya)

where X; € R? vector of independent variables,
Y; € {1,...,C} the label
® Want :
® to predict the label y at any position x



k-Nearest Neighbor (1/4)
Principle of the k-NN algorithm

@ Compute distances
® Compute pairwise distances d(x, X;) forall i=1,...,n
@® Sort training data
® Sort the data points from the closest X[y to the farthest X,
(Ie d(XaX(l)) <...< d(Xa X(n))
© Prediction h(x, k) = Majority vote of the k-NN
® Consider the labels Y{y), ..., Y(x) of the k closest points to x
and take the majority vote

h(x, k) = argmax {3/ I{ () = c}}



k-Nearest Neighbor (2/4)
Principle of the k-NN algorithm

kNN Algorithm

0. Look at the data

Say you want to classify the grey point
into a class. Here, there are three potential
classes - lime green, green and orange.

2. Find neighbours

Point Distance
O- 2.1 —> 1stNN
O~ 24 —> 2ndNN
O® 31 — 3dWN
O+® 45 —> ath\N

Next, find the nearest neighbours by
ranking points by increasing distance. The
nearest neighbours (NNs) of the grey
point are the ones closest in dataspace.

1. Calculate distances

Start by calculating the distances between
the grey point and all other points.

3.Vote on labels

class *Of
lass .
votes Class wins

2 the vote!
® 1 rointQis
! therefore predicted
to be of class

Vote on the predicted class labels based
on the classes of the k nearest neigh-
bours. Here, the labels were predicted
based on the k=3 nearest neighbours.



Nearest Neighbors (3/4)
Hyperparameters

e Choice of a distance d between points of R

® Number k of Nearest Neighbors, estimated by
cross-validation :

nearest neighbour (k = 1) 20-nearest neighbour
<G> ,/H/ / o
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k-Nearest Neighbor (4/4)
Theory

Recall : classification error L(h) = P(Y # h(X)) and
L* =infL

Consistency result :
EL(h(-, ky)) — L*

under the condition : k, — oo and k,/n — 0 when n — oo
No closed-form solution for optimal k, (in practice, we use
cross-validation)

No theoretical clue on the choice of the distance (related to
data representation and the physics of the problem)



Interlude - Some tools

Definition of Margin Loss, Contraction Principle,
Concentration Inequality



Margin loss
® Fixp>0

® The margin loss is defined, for any u,v € R, as :
U(u,v) = my(uv) where

(0 if p<t
t .
my(t) = 1—; it 0<t<p
1 if t<0

® Empirical margin error on a sample D,, :

Lo(F) = 7 D" m(Yif(X)
i=1



Contraction principle

Theorem. (Ledoux, Talagrand (1991))
Consider 1) : R — R a Lipschitz function with constant k

Then, for any class F of real-valued functions, we have :

ﬁn(zp oF) < mﬁn(}")



Reminder from Chapter 2
Uniform bound with Rademacher average

Proposition.

Consider F a class of functions from Z to [0, 1]

Then, with probability at least 1 — § :

feF 2n

sup (E(f(zm DS f(z,-)) < 2R, (F) + |/ 2BL)
i=1

and

?u; (E(f(21)) — % Zn: f(Z,-)) < 2,3”(]_—) 43 log(2/6)

- 2n
i=1



2. Consistency of global methods
a. Support Vector Machines



Principle of Support Vector Machines

Kernel k : RY x RY — R symmetric and positive

Reproducing Kernel Hilbert Space (H, (-,-)) corresponding to
kernel k.

Class of functions/classifiers : g = sgn(h) where
heH(X)= {h: > aik(Xi,) ¢ oon,... GR} C Hy
i=1
Optimization problem : set A > 0

hy = argmin {Z(l — Yih(X;))+ + )\||h||k}

He i=1



RKHS theory in a nutshell

Theorem.
Let k : RY x RY — R a kernel that is symmetric and positive.

Then, there exists :

® a Hilbert space (Hy, (-,-)), called the Reproducing Kernel
Hilbert Space

® a mapping ® : RY — H, such that :

Vu,v e R? k(u,v) = (®(u), d(v))

Plus, we have the reproducing property :
VYheHe, YueR?,  h(u) = (h k(u,-))

and ||h||x = /(h, h)



Key property of SVM

® By the representer’s theorem (admitted), it suffices to
minimize over H(X) instead of H

® Note that, if h € H(X) :

1Al = aiajk(X;, X;)
iJ



Global methods (e.g. CRM)

Based on empirical minimization of error functionals
Example in the case of soft classifiers h : RY — R

Convex risk minimization, with ¢ positive convex cost
function :

~ 1 <
Alh) = =3 o~ Yih(X))
i=1
Note that if h € span(H) with H some class of classifiers,

then the minimization problem is convex.

Main issue : complexity of the class H of candidate decision
rules



Rademacher complexity of SVM

Proposition.
Let Xi,...,X, be an n-sample in RY, and denote by K the Gram
matrix with coefficients k(Xi, X;), 1 <i,j<n.

Introduce the subspace of functions with bounded RKHS norm :
Fm={he M - |[hllx <M}

We then have :

Ro(Fu) < M tr:ce(K)

In addition, if we have : k(X;, X;) < R? for 1 < i < n, then



Margin bounds for SVM classification

Theorem. (Fixed margin)
Let H, the RKHS with kernel k.

Fix p € (0,1), and § > 0. Then with probability at least 1 — 6, we
have, for any SVM classifier g :

L(g) < Lnp(g) +2 ( p”’\/"; ) N Iog;/a)

and

2n

Lg) < Tone) + <M\/traT> log(2/9)



