
Introduction to Statistical Learning

Nicolas Vayatis

Session 6 - Statistical analysis of mainstream ML algorithms

Part II - Feedforward Neural Networks, Bagging, Random
Forests

Overview of Chapter 3

0. (Consistency of local methods : k-NN, decision trees, local
averaging)

1. Consistency of global methods

a. (Boosting)
b. Support Vector Machines
c. Neural networks

2. Consistency of ensemble methods

+ Bagging, Random Forests

Main theoretical objectives of the course

• Take a well-known ML algorithm which operates in F : it
produces a (random) sequence of decision rules (f̂n)n≥1 in F .
Then show :

• Convergence of estimation error :

L(f̂n) → inf
F

L almost surely as n → ∞ ,

• Upper bounds : with probability at least 1− δ, there exists
some constant c such that :

L(f̂n)− inf
F

L ≤ C (F , n) + c

√
log(1/δ)

n
,

where C (F , n)) = O(1/
√
n) after processing some

complexity/stability measure

Chapter 3

1. Consistency of global methods
c. Neural networks

Historical perspective
on neural networks

• Cybernetics (1940s-1960s)
• Achievement : modeling and training one neuron
• Key algorithm : Linear Perceptron
• Paper : Rosenblatt (1958)

• Connectionism (1980s)
• Achievement : training one or two hidden layers
• Key algorithm : Backpropagation
• Paper : Rumelhart-Hinton-Williams (1986)

• Deep Learning (2007-....)
• Achievement : training multiple layers of representation
• Key algorithm : Stochastic gradient
• Papers : Hinton (2006), Bengio-LeCun (2007)

Principle of feedforward neural networks
Single-layer

• Form of classi�er implemented by a one-hidden layer
perceptron : g = sgn(f − 1/2), where :

• f (x) = c0 +

p∑
i=1

ci · σ ◦ ψi (x) , ∀x ∈ Rd

• σ is a sigmoid,

• the ψi 's are linear : ψi (x) = bi +

p∑
i=1

ai,jx
(j)

Principle of feedforward neural networks
Multiple-layer

• Hypothesis space : functions of the form

f (x , θ) = σm ◦ Am ◦ σm−1 ◦ ... ◦ A2 ◦ σ1 ◦ A1x

where θ =
(
A1, . . . ,Am

)
and A1, . . . ,Am are matrices

Intuition for complexity analysis : linear
arrangements

Arrangements : de�nition and key property

De�nition.
A simple arrangement is a collection A of hyperplanes in dimension

d such that :

(i) any d hyperplanes of A have a unique point in common, and

(ii) any d + 1 hyperplanes of A have no point in common.

Theorem. (Edelsbrunner (1987))

The number of cells of a simple arrangement with cardinality

|A| = M is given by :
2M if d ≥ M

d∑
i=1

(
M
i

)
if d < M

Consistency result for ERM on
arrangements

Theorem. (Devroye, Györ�, Lugosi (1996))

The ERM classi�er ĝM
n on all possible arrangements of size at most

M has expected error which converges to the Bayes error :

E
(
L
(
ĝM
n

))
→ L∗

for all distributions, as soon as M → ∞ and M = o(n/ log n).

The key argument of the proof relies on exact computation of
shattering coe�cient :

γ(G, n) =
(
2(nd + 1)

)M

Comments

• More work needed to deal with data-driven arrangements (with
or without optimization)

• One hidden layer neural nets are universal approximators
(denseness results)

• Upper bounds on VC dimension available

• More theory in [Devroye, Lugosi, and Györ�, 1996] !

Consistency result for L1-error minimization

Rademacher complexity of neural networks
(Setup)

Consider an IID sample X1, . . . ,Xn of observations over some space
X and F0 is a set of real-valued functions over X that includes the
zero function.

Assume ψ : R → R is k-Lispchitz and de�ne, for �xed positive
real numbers V and B :

• a one-layer network as :

F1 =

x 7→ ψ

v +
m∑
j=1

wj fj(x)

 : |v | ≤ V , ∥w∥1 ≤ B, fj ∈ F0

• a p-layer network as (iterative de�nition with �xed layer size) :

Fp =

x 7→ ψ

v +
m∑
j=1

wj fj(x)

 : |v | ≤ V , ∥w∥1 ≤ B, fj ∈ Fp−1

Rademacher complexity of neural networks
(Exercise)

Prove the following upper bounds on the empirical Rademacher
average :

1 R̂n(F1) ≤ k

(
V√
n
+ 2BR̂n(F0)

)
.

2 Assume in addition that ψ(−u) = −ψ(u) and k = 1 then
show that on X = {x ∈ Rd , ∥x∥∞ ≤ 1} :

R̂n(Fp) ≤
1√
n

(
Bp
√
2 ln(2d) + V

p−1∑
l=1

B l

)
.

Chapter 3

2. Consistency of ensemble methods
Bagging and Random Forests

Ensemble methods
Starting point

• Consider we already have a machine learning algorithm with
reasonable performance that we want to improve, e.g. decision
tree, k-NN, SVM, ...

• The idea of the ensemble is to generate di�erent functions
from the same training data and the same hypothesis space

• In the illustration coming next and most of the discussion, the
basic hypothesis space is the one with decision trees obtained
with orthogonal splits (such splits are called decision stumps).

Ensembles of decision trees
General principle

Randomization (training) + averaging (decision rule)

• Generate a collection of weak predictors (ensemble) obtained
with a basic Machine Learning algorithm (e.g. decision tree)

• For every point x , compute their individual predictions

• Take an average or a majority vote of the individual predictions
to determine the prediction of the ensemble

Ensembles of decision trees
Resulting classi�er

Ensembles of decision trees
Three popular methods

• Bagging (Breiman, 1996)

• Random forests (Amit-Geman, 1997 ; Breiman, 2000)

• ... and also Boosting (Freund-Schapire, 1996) just seen before

Randomized rules (1/2)

• For a given sample Dn = {(Xi ,Yi) : i = 1, . . . , n}

• Introduce Z a measurable space and Z a random variable over
Z

• Conditionally on the sample Dn and on (X ,Y), draw
independent sequences Z1, . . . ,ZB of B copies of Z

• Design a pool of decision rules ĝn,b(x) = ĝn,b(x ,Zb,Dn) for
b = 1, . . . ,B

Randomized rules (2/2)

Two options :

• Voting classi�er :

ĝB
n (x) = I

{
B∑

b=1

ĝn,b(x) > B/2

}
,

• Averaging classi�er (which is not a randomized classi�er) :

gB
n (x) = I {EZ ĝn(x ,Z) > 1/2} .

Bagging - Breiman, 1996

• Randomization through bootstrap replicates of Dn

• Randomized rule through bagging :

gn(x ,Z ,Dn) = gn(x ,Dn(Z))

• ... and Dn(Z) = {(X ∗
i ,Y

∗
i) : i = 1, . . . , n} where the points

are drawn through random sampling from Dn

• Typical sampling is sampling with replacement and
|Dn(Z)| = n

Bagging - a consistency result

• Special case with subsampling and without replicates in the
bootstrap sample

• |Dn(Z)| = N ≤ n and ...

• ... we assume N ∼ Bin(n, qn)

• ... therefore qn = P((Xi ,Yi) ∈ Dn(Z))

• Consistency of both voting classi�er and averaging classi�er
under assumptions :

• {gn} sequence of classi�ers that is consistent for P
• nqn → ∞ when n → ∞

Bagging can render consistent rules that
are inconsistent

• Biau, Devroye and Lugosi (2008) have considered bagging
1-NN

• 1-NN is consistent if and only if L∗ ∈ {0, 1/2}

• Bagging averaged 1-NN classi�er is consistent for any P if and
only if qn → 0 and nqn → ∞ when n → ∞

• Proof follows the lines of Stone theorem (cf. Devroye, Györ�,
Lugosi (1996))

Plain Random Forests - Breiman 2001

• Main ingredient 1 - Build randomized tree classi�ers

⇒ perform splits in random subspaces (parameter mtry in R),
use trees with small depth

• Main ingredient 2 - Booststrap samples of data set Dn

⇒ number of trees has limited impact above 100

• Main ingredient 3 - Aggregation through averaging classi�er

• Credits to Amit and Geman (1997) ! !

RF consistency - Biau, Devroye, Lugosi
(2008)

• Simpli�ed model : the purely random forest

• Start with a tree classi�er with rectangular cells with
orthogonal splits over [0, 1]d and build randomized versions as
follows :

• Draw a leave according to a uniform distribution over the set
of leaves of the tree

• Draw one split variable among the d dimensions of input space
with a uniform

• Position the split at random (uniform distribution again)
• Repeat k times splitting of terminal cells of the tree

• Result : The averaged classi�er is consistent if kn → ∞ and
kn/n → 0 when n → ∞

• Variant developed in Biau (2012) for regression setup with
non-uniform split variable selection and �xed splitting value

Take-home message (on aggregation)

• Aggregation of consistent rules leads to consistent rules

• Aggregation of inconsistent rules may lead to consistent rules

• Conjecture : Breiman's original RF belongs to this case

• 'Oldies' like Stone theorem are useful ! !

• Lots of known 'unknowns' !

Cherry on the cake : a mirror descent

algorithm

Motivations

• Ensembles are de�ned by a set of predictors and their weights

• For bagging and random forests, weights are uniform

• In boosting weights re�ect individual performance but are
determined iteratively

• Knowing the predictors, what are the optimal weights ?

Problem formulation

• Convex risk minimization under an ℓ1 constraint

• Set w 7→ A(w) to be the convex objective

• w ∈ RT
+ is the weight vector s.t. ∥w∥1 = C , for some C > 0

• Approach : fast iterative algorithm to optimize w over the
C -simplex

Setup for learning and optimization

• Vector of predictors H(x) ∈ RT

• Loss function φ : R → R+ is convex with derivative φ′

(monotone version)

• Optimization objective A(w) = E
(
φ(YwTH(X))

)
(not

necessarily accessible)

• "Observable" : stochastic subgradient at observation (Xi ,Yi)

ui (w) = φ′(Yiw
TH(Xi))YiH(Xi) ∈ RT

• Insight : (fast) gradient descent in the dual space

The "mirror"

• Potential or proxy function V convex over E = (RT , ∥∥1)
• Dual space : E ∗ = (RT , ∥∥∞)

• C-simplex ∆(C) = {w ∈ RT
+ : ∥w∥1 = C}

• The β-convex conjugate of V is de�ned as : for any z ∈ E ∗,
for any β > 0

Wβ(z) = sup
w∈∆(C)

(wT z − βV (w))

• Here : special case where V is the entropy proxy function,
∀w ∈ ∆(C)

V (w) = C ln(T/C) +
T∑
j=1

w (j) lnw (j)

Mirror descent algorithm for convex risk
optimization

For i = 1, . . .

• "Temperature" parameter : Let βi = β0
√
i + 1

• Gradient updates ζi = ζi−1 + ui (wi−1)

• Mirror step : wi = −∇Wβi
(ζi)

• Averaging step : ŵi+1 = ŵi − 1
i+1(ŵi − wi)

NB : constant stepsize equal to one in this version

Upper bound on numerical convergence

• Consider a positive and convex loss φ and T ≥ 2, then

E(A(ŵn))− min
w∈∆(C)

A(w) ≤ κ(φ,C)

√
(n + 1) lnT

n

where κ(φ,C) is explicit and tight

• Classi�cation case : κ(φ,C) = 2C supx∈[−C ,C] |φ′(x)|

Background on mirror descent algorithms

• A.S. Nemirovski and D.B. Yudin. Problem Complexity
andMethodE�ciency in Optimization. Wiley-Interscience, 1983.

• B.T. Polyak and A.B. Juditsky. Acceleration of stochastic
approxima-tion by averaging. SIAM J. Control Optim.,
30(4) :838�855, 1992

• A. Beck and M. Teboulle. Mirror descent and nonlinear projected
sub-gradient methods for convex optimization. Operations Research
Letters,31 :167�175, 2003.

• J. Kivinen and M.K. Warmuth. Additive versus exponentiated
gradient updates for linear prediction. Information and computation,
132(1) :1�64, 1997.

• A. Juditsky, A. Nazin, A. Tsybakov, and N. Vayatis. Recursive
Aggregation of Estimators via the Mirror Descent Algorithm with
averaging. Problems of Information Transmission , 41(4) : 368-384,
2005.

Beyond this course

Theory of ML : From 2000 to Today

• Consistency/rates/fast rates of convergence of the estimation
error for regularized learning methods : SVM (Steinwart,
2005), Boosting (Lugosi-Vayatis, 2004)(Zhang, 2004), general
surrogate losses (Bartlett, Jordan, McAuli�e, 2006)

• Theory of ranking and scoring algorithms with advanced
concentration inequalities (Clémençon-Lugosi-Vayatis, 2008)

• Other tracks with theoretical advances : multiclass
classi�cation, ranking, multitask learning

• Other setups : online learning, learning view on game theory,
transfer learning, active learning...

Bias-variance revisited

Trade-o� wrt : Search space F , sample size n, numerical tolerance ρ

[The trade-o�s of Large Scale Learning, L. Bottou, O. Bousquet, 2011]

Shallow learning vs. Deep Learning

Mysteries about deep learning

• Approximation : deep better than shallow ?

• Optimization : nonconvex with millions of dimensions (!)

• Over�tting : huge complexity

Facts about approximation theory

Comparison of Shallow vs. Deep Networks

• Poggio and Liao (2018) : approximation of compositional
functions

• Liang and Srikant (2017) : approximation of polynomial
functions

• Similar �ndings :
" the number of neurons needed by a shallow network to

approximate a function is exponentially larger than the cor-

responding number of neurons needed by a deep network

for a given degree of function approximation. "

The loss landscape of Deep Learning

View on a 56-layer neural network without skip-connection

From [Visualizing the Loss Landscape of Neural Nets,

H. Li, Z. Xu1, G. Taylor, C. Studer, T. Goldstein, 2018]

Facts about optimization in Deep Learning

• Under certain conditions, no poor local minima

• SGD avoids bad critical points

• Larger networks are better behaved (local minima are global)

References :

Soudry and Carmon (2016), �No bad local minima : Data independent training error guarantees for
multilayer neural networks�.
Kawaguchi (2016), �Deep learning without poor local minima�.
Hae�ele and Vidal (2017), �Global optimality in neural network training�.
Janzamin, Sedghi, and Anandkumar (2015), �Beating the perils of non-convexity : Guaranteed training
of neural networks using tensor methods�.
Panageas and Piliouras (2016), �Gradient descent only converges to minimizers : Non-isolated critical
points and invariant regions�.
Brutzkus, Alon et al. (2017), �SGD Learns Over-parameterized Networks that Provably Generalize on
Linearly Separable Data�.

The theory of a double descent risk curve

How Deep Learning (and random forests) avoid over�tting

From [Reconciling modern machine learning and the bias-variance
trade-o�, M. Belkin, D. Hsu, S. Ma, S. Mandal, 2018]

If you liked this course, you will/should
like...

• Fondements théoriques du deep learning

• Sequential learning

• Kernel methods for machine learning

• Représentations parcimonieuses

• Graphs in machine learning

• Apprentissage pour les séries temporelles

Thank you !

