
ENS Paris-Saclay Master 2 MVA

Introduction to Statistical Learning

Final exam (3 pages)

Duration : 2h00 - Lecture notes allowed

Notations

— Indicator function. The indicator function I{Ω} takes the value 1 if Ω is true, and 0
otherwise.

— Empirical Rademacher average. Consider an IID sample Zn
1 = (Z1, . . . , Zn) and let

σ1, . . . , σn an IID sample of Rademacher random variables (P{σ1 = +1} = P{σ1 =
−1} = 1/2) independent of Zn

1 . Given a class T of functions, we denote its empirical
Rademacher average by :

R̂n(T ) = E

(
sup
t∈T

1

n

n∑
i=1

σit(Zi) | Zn
1

)

— Kernel function - definitions and properties. Let k : Rd × Rd → R be a positive
definite and symmetric kernel function. We recall that k has the property that there
exist : (i) a Hilbert space H equipped with scalar product < ·, · >k and norm ∥ · ∥k
and (ii) a feature mapping Φ : Rd → H such that k(x, x′) =< Φ(x),Φ(x′) >k

and k(x, x) = ∥Φ(x)∥k for any x, x′. Given a sample X1, . . . , Xn, we denote by
K =

(
k(Xi, Xj)

)
1≤i,j≤n

the Gram matrix induced by the kernel function k.

Exercise 1 - Consider an IID sample X1, . . . , Xn of random vectors in Rd.

1. Consider G a class of functions with values in {−1,+1} and its empirical Rademacher
average R̂n(G), and let L the class of classification loss functions :

L = {(x, y) 7→ I{g(x) ̸= y} : g ∈ G} .

Assume an IID sample of pairs (X1, Y1), . . . , (Xn, Yn) is available. What is the relation
between R̂n(L) and R̂n(G) ? Provide the proof of this relation.

2. Consider the class of linear functions FM2 = {x 7→ wTx : w ∈ Rd, ∥w∥2 ≤ M2}
and find an upper bound for the empirical Rademacher average R̂n(FM2) in terms
of M2, n, and

∑n
i=1 ∥Xi∥22.

3. Consider the class of linear functions FM1 = {x 7→ wTx : w ∈ Rd, ∥w∥1 ≤ M1} and
assume that, for any i, we have ∥Xi∥∞ ≤ r almost surely. Find an upper bound for
the empirical Rademacher average R̂n(FM1) in terms of M1, n, r and d.

4. Consider a kernel function k and the class of functions FM = {x 7→< w,Φ(x) > : w ∈
H, ∥w∥k ≤ M}, and find an upper bound for R̂n(FM ) which depends on M , n, and
k. Provide a simple condition on the kernel k such that the behavior of R̂n(FM ) as
a function of n is at most O(n−1/2).
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Exercice 2 - Consider an IID sample of Rademacher random variables (P{σ1 = +1} =
P{σ1 = −1} = 1/2).

1. Consider a random variable X such that E(X) = 0 and X ∈ [a, b] almost surely.
Give a sketch of proof evoking the main arguments of the following result : for any
t > 0, we have :

E(etX) ≤ et
2(b−a)2/8

2. Consider Q ⊂ Rk a finite set of points. We assume that they are all contained in the
Euclidean ball with center the origin and radius R. Then show that : for any t > 0

E

(
sup

q=(q1,...,qk)∈Q

k∑
i=1

σiqi

)
≤ tR2

2
+

log |Q|
t

where |Q| is the number of points in Q.

3. Provide the optimal choice of t in the previous question and give the expression of
the optimal bound.

Exercice 3 - Consider the following :

— Dn = ((X1, Y1), . . . , (Xn, Yn)) an IID sample of supervised training data over X ×Y,

— F a class of predictors from X to Y,

— A : Dn 7→ f̂n ∈ F a learning algorithm,

— ℓ : Y2 → R+ a cost function such that ℓ(y, y′) ≤ Λ for any y, y′ ∈ Y, with Λ > 0,

— L(f̂) = E(ℓ(Y, f̂(X)) | Dn) is the risk of any data-driven predictor f̂ ,

— L̂n(f) =
1

n

n∑
i=1

ℓ(Yi, f(Xi)) is the empirical risk of any predictor f ∈ F .

We consider the notation D′
n for a sample of size n which differs from Dn by a single point,

and f̂ ′
n = A(D′

n). We assume that, for any n, there exists a βn ≥ 0 such that for any samples
Dn and D′

n and for any pair (x, y) ∈ X × Y, we have : |ℓ(y, f̂n(x))− ℓ(y, f̂ ′
n(x))| ≤ βn.

1. Find an upper bound on |L(f̂n)− L(f̂ ′
n)| depending on βn.

2. Find an upper bound on |L̂n(f̂n)− L̂n(f̂
′
n)| depending on βn, Λ and n.

3. Show that the quantity L(f̂n) − L̂n(f̂n) satisfies the bounded differences condition
and apply a well-known concentration inequality.

4. Then, show that we have, with probability at least 1− δ :

L(f̂n) ≤ L̂n(f̂n) + βn + (2nβn + Λ)

√
log(1/δ)

2n

5. What would be an appropriate order of magnitude for the coefficient βn ? Can you
give examples of algorithms that would display such values for βn ?
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Exercice 4 - Consider the setup of preference learning where we observe an IID sample
of triples (X1, X

′
1, Y1), . . . , (Xn, X

′
n, Yn). The probabilistic model assumes that, for each

i, the triple (Xi, X
′
i, Yi) is such that Xi, X

′
i are IID random vectors over Rd and Yi is a

random variable over {−1, 0,+1}. We define the ranking error of a preference rule g : Rd →
{−1, 0,+1} as :

LR(g) = P{Y ̸= 0, Y · (g(X ′)− g(X)) ≤ 0}

and the empirical margin ranking error as :

L̂R
n,ρ(g) =

1

n

n∑
i=1

φρ(Yi · (g(X ′
i)− g(Xi)) .

Now consider a class G of preference rules and define :

G̃ = {(x, x′, y) 7→ y(g(x′)− g(x)) : g ∈ G} .

1. Provide an upper bound of the empirical Rademacher average of G̃ in terms of the
empirical Rademacher average of G.

2. Which inequality relates the empirical Rademacher average of the loss class φρ ◦ G̃
to the empirical Rademacher average of G̃ ? Provide a proof of this inequality.

3. Show that, for any δ ∈ (0, 1), we have, with probability at least 1− δ : for any g ∈ G

E(φρ(y(g(x
′)− g(x))) ≤ L̂R

n,ρ(g) + c1R̂n(mρ ◦ G̃) + c2(n, δ)

for some c1 and c2(n, δ) that will have to be given explicitly.

4. Deduce from the previous question a margin error bound for LR(g) that holds with
large probability for any g ∈ G and which involves the empirical ranking error of g
over the sample and the complexity of G.

5. Specify the previous result to the case of a kernel class of functions with G = FM as
defined in Exercise 1.

6. Which algorithms can be justified by the inequalities obtained in the two previous
questions.
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