ENS PARIS-SACLAY Master 2 MVA

Introduction to Statistical Learning

Mid-term exam

Duration : 2h - Lecture notes not allowed

Exercise 1 - Consider a random pair (X,Y) over R?x {—1, +1} and decision rules denoted
by g. Find the minimizer g* of the following error measures, as well as their minimum value

L(g*) :
1. Consider classifiers g : RY — {—1,+1} and the error measure L defined for any
a, B > 0 as follows :

L(g) = E(al{Y = +1}{g(X) = =1} + SI{Y = —1}{g(X) = +1})

2. Consider decision rules g : R — {—1,Q,+1} and the error measure L defined for
any v € (0,1/2) as follows :

Li(g) =P(Y #g(X) , g(X) # Q) +P(g9(X) = Q)

Exercise 2 - Consider IID random pairs (X,Y) and (X', Y”’) over R?x ). Set the following
posterior probabilities :

Vz,o' e R py(z,2) =P{Y -Y'>0|X =z, X' =2'}
p(z,2) =P{Y -Y' <0|X =z,X =2'}

and for any preference rule 7 : R? x R? — {—1,0, 1}, consider the pairwise error measure
Lim)=P{(Y -Y')-7(X,X') <0} .

1. Find the minimizer 7* and minimum L* = L(7*) for this problem, as well as the
excess of risk L(m) — L* for any preference rule 7 (will involve p4 and p_).

2. Assume Y = {—1,+1} and denote by n(z) = P{Y = +1 | X = z}. Provide the
expressions for py (z,2’) and p_(x,2’') and discuss how the behavior of n could lead
to difficult situations for the learning process to be efficient.

3. Assume now that J = R and that ¥ = m(X) + o(X) - N where m and o are
Px-measurable functions, NV is a random noise variable with normal distribution
N(0,1), while N and X are independent random variables. Provide the expressions

for py(x,2’) and p_(z,2’) in this case and discuss the relation between properties of
the model and the learning process.
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Exercise 3

1. Consider @ a real-valued random variable such that : E(Q) = 0 and P(Q € [a,b]) = 1.
Prove the following upper bound : for any s > 0,

E(e*?) < exp (W)

2. Consider V = (V4,...,V,,...) and Z = (Z1, ..., Zy,...) two sequences of real-valued
random variables. We assume the following : for any n > 1,

o V, =4(Z,...,2Zy,) for some mesurable function v
® E(Vn—H | Zl,...,Zn) =0
e there exists a sequence T, which is measurable wrt the o-algebra generated by

(Z1,...,Zp—1) and ¢ > 0 such that : for any n, T,, <V, < T, +¢

Find the expression of k(t, n, c) such that, for any ¢ > 0

P(Z%>t> < k(t,n,c), andP(ZV;<—t) < k(t,mn,c) .

i=1 i=1
3. Consider a real-valued and measurable function h of n variables such that there exist

¢ > 0 such that : for any i € {1,...,n}

sup (21, s 20) — h(21, - 2io1, 20 Zid 1, -5 20)| <€

Z1,es2n0,2)
Assume that Z1,..., Z, are IID random variables. Prove that, for any ¢ > 0
P(h(Z1,...,2Zn) —E(MZ1,...,Zy)) > t) < K(t,n,c)
and
P(h(Zy,...,2n) —E(WMZ1,. .., Zy)) < —t) < K(t,n,c)

where k(t,n,c) is as before.

4. Provide two examples of applications of the previous inequality that relevant to
statistical learning theory.

Exercise 4 - Assume we have access to IID classification data (X1,Y7)...(X,,Y,) and
consider a set of functions h over R? parameterized by § € R? and defined as h(z,6) =
sin(67'z).

1. Propose a strategy to infer 8 from the data.

2. How to assess the performance of the selected decision rule?

3. What guarantees can be given on future performance of the selected decion rule?
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