Introduction to Statistical Learning

Exercise set \#1

Exercise 1 - Consider the binary classification model where the random pair (X, Y) has distribution P over $\mathbb{R} \times\{0,1\}$ and :

$$
\begin{aligned}
\mathcal{L}(X \mid Y=0) & =\mathcal{U}([0, \theta]) \\
\mathcal{L}(X \mid Y=1) & =\mathcal{U}([0,1]) \\
p & =\mathbb{P}(Y=1)
\end{aligned}
$$

with $p, \theta \in(0,1)$ fixed. Compute the posterior probability $\eta(x)=\mathbb{P}(Y=1 \mid X=x)$, for any $x \in \mathbb{R}$, as a function of p, θ. What if $\theta=1 / 2$?

Exercise 2 - Consider the binary classification model where the random pair (X, Y) has distribution P over $\mathbb{R}_{+} \times\{0,1\}$ and :

- the marginal distribution of X over \mathbb{R}_{+}is denoted P_{X}
- the conditional distribution of Y given $X=x$ is a Bernoulli distribution with parameter $\eta(x)=\frac{x}{x+\theta}$, for any $x \in \mathbb{R}_{+}$, and for fixed $\theta>0$.
Find the Bayes classifier for this model (i.e. the minimizer of $L(g)=\mathbb{P}(Y \neq g(X))$ over all measurable classifiers $g: \mathbb{R}_{+} \rightarrow\{0,1\}$. Give the expression of the Bayes error $L^{*}=L\left(g^{*}\right)$ in the case where $P_{X}=\mathcal{U}([0, \alpha \theta])$ with $\alpha>1$. What is the value of α that maximizes L^{*} ?

Exercise 3-Let $X=(T, U, V)^{T}$ where T, U, V IID real-valued random variables with exponential distribution $\mathcal{E}(1)$. Define $Y=\mathbb{I}\{T+U+V<\theta\}$ with fixed $\theta>0$.

1. Find the Bayes classifier $g^{*}(T, U)$ when V is not observed. Give the expression of the classification error of g^{*} (also called Bayes error). Compute it for $\theta=9$.
2. Now assume that only T is observed, and address the same questions as above.
3. Propose a classifier for X when none of T, U, V are observed. What is its classification error?

Exercise 4 - Find the expressions of f_{+}, f_{-}and η in the following probabilistic models :

- Discriminant Analysis : find η

$$
f_{+}=\mathcal{N}_{d}\left(\mu_{+}, \Sigma_{+}\right), f_{-}=\mathcal{N}_{d}\left(\mu_{-}, \Sigma_{-}\right)
$$

- Logistic regression : find f_{+}, f_{-}

$$
\log \left(\frac{\eta_{\theta}(x)}{1-\eta_{\theta}(x)}\right)=h(x, \theta), \quad \text { typically } h(x, \theta)=\theta^{T} x
$$

Exercise 5-Find the optimal elements in the following cases of error measures with binary classification data :

1. Asymmetric cost - set $\omega \in(0,1)$,

$$
\begin{aligned}
& L_{\omega}(g)=2 \mathbb{E}((1-\omega) \mathbb{I}\{Y=+1\} \mathbb{I}\{g(X)=-1\} \quad \\
& \quad+\omega \mathbb{I}\{Y=-1\} \mathbb{\mathbb { L }}\{g(X)=+1\})
\end{aligned}
$$

2. Classification with mass constraint - set $u \in(0,1)$

$$
\min _{g} \mathbb{P}(Y \neq g(X)) \quad \text { subject to } \quad \mathbb{P}(g(X)=1)=u
$$

3. Classification with reject option - set $\gamma \in(0,1 / 2)$

$$
L_{d}^{R}(g)=\mathbb{P}(Y \neq g(X), g(X) \neq \circledR)+\gamma \mathbb{P}(g(X)=\circledR)
$$

Exercise 6 - Consider (X, Y) a random pair that models classification data with labels in $\{0,1\}$. Define the following classification error

$$
L_{\omega}(g)=\mathbb{E}(2 \omega(Y) \cdot \mathbb{I}\{Y \neq g(X)\})
$$

where $\omega(0)+\omega(1)=1$.
Consider the unit square in \mathbb{R}^{2}.

1. Plot the curves defined by $g \mapsto(\mathbb{P}\{g(X)=1 \mid Y=0\}, \mathbb{P}\{g(X)=1 \mid Y=1\})$ when g varies such that $L_{\omega}(g)=C$ with C fixed, for different values of C.
2. Same question but assuming now that $\mathbb{P}\{g(X)=1\}=C$ with C fixed.

Exercise 7 - We consider the model for classification data where X is a random vector on \mathbb{R}^{d} and Y is a random variable taking values in $\{-1,+1\}$. We denote $\eta(x)=\mathbb{P}\{Y=$ $+1 \mid X=x\}$ the posterior probability. We consider the following problems for which the question is to compute the optimal decision rule g^{*} or f^{*} - please also provide the main proof arguments.

1. Criterion to minimize : $R(g)=\mathbb{E}\left((Y-g(X))^{2}\right)$ where $g: \mathbb{R}^{d} \rightarrow\{-1,+1\}$
2. Criterion to minimize : $R(f)=\mathbb{E}\left((Y-f(X))^{2}\right)$ where $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
3. Criterion to minimize : $A(f)=\mathbb{E} \exp (-Y f(X)))$ where $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$.
4. Criterion to minimize : $A(f)=\mathbb{E}(\log (1+\exp (-Y f(X))))$ where $f: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup$ $\{-\infty,+\infty\}$.
5. Criterion to minimize : $A_{2}(f)=\mathbb{E}(\max \{0,1-Y f(X)\})$ where $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Explain why such criteria are relevant for the binary classification problem.

Exercice 8 - Consider IID random pairs (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ over $\mathbb{R}^{d} \times \mathcal{Y}$. Set the following posterior probabilities :

$$
\forall x, x^{\prime} \in \mathbb{R}^{d}, \quad \begin{array}{ll}
\rho_{+}\left(x, x^{\prime}\right)=\mathbb{P}\left\{Y-Y^{\prime}>0 \mid X=x, X^{\prime}=x^{\prime}\right\} \\
& \rho_{-}\left(x, x^{\prime}\right)=\mathbb{P}\left\{Y-Y^{\prime}<0 \mid X=x, X^{\prime}=x^{\prime}\right\}
\end{array}
$$

and for any preference rule $\pi: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow\{-1,0,1\}$, consider the pairwise error measure

$$
L(\pi)=\mathbb{P}\left\{\left(Y-Y^{\prime}\right) \cdot \pi\left(X, X^{\prime}\right)<0\right\} .
$$

1. Find the Bayes rule π^{*} and the Bayes error $L^{*}=L\left(\pi^{*}\right)$ for this problem, as well as the excess of risk $L(\pi)-L^{*}$ for any preference rule π (will involve ρ_{+}and ρ_{-}).
2. Assume $\mathcal{Y}=\{-1,+1\}$ and denote by $\eta(x)=\mathbb{P}\{Y=+1 \mid X=x\}$. Provide the expressions for $\rho_{+}\left(x, x^{\prime}\right)$ and $\rho_{-}\left(x, x^{\prime}\right)$ and discuss how the behavior of η could lead to difficult situations for the learning process to be efficient.
3. Assume now that $\mathcal{Y}=\mathbb{R}$ and that $Y=m(X)+\sigma(X) \cdot N$ where m and σ are P_{X}-measurable functions, N is a random noise variable with normal distribution $\mathcal{N}(0,1)$, while N and X are independent random variables. Provide the expressions for $\rho_{+}\left(x, x^{\prime}\right)$ and $\rho_{-}\left(x, x^{\prime}\right)$ in this case and discuss the relation between properties of the model and the learning process.
