Introduction to Statistical Learning

Exercise set #1

Exercise 1 - Consider the binary classification model where the random pair (X, Y) has distribution P over $\mathbb{R} \times \{0, 1\}$ and :

 $\mathcal{L}(X \mid Y = 0) = \mathcal{U}([0, \theta])$ $\mathcal{L}(X \mid Y = 1) = \mathcal{U}([0, 1])$ $p = \mathbb{P}(Y = 1)$

with $p, \theta \in (0, 1)$ fixed. Compute the posterior probability $\eta(x) = \mathbb{P}(Y = 1 | X = x)$, for any $x \in \mathbb{R}$, as a function of p, θ . What if $\theta = 1/2$?

Exercise 2 - Consider the binary classification model where the random pair (X, Y) has distribution P over $\mathbb{R}_+ \times \{0, 1\}$ and :

- the marginal distribution of X over \mathbb{R}_+ is denoted P_X
- the conditional distribution of Y given X = x is a Bernoulli distribution with parameter $\eta(x) = \frac{x}{x+\theta}$, for any $x \in \mathbb{R}_+$, and for fixed $\theta > 0$.

Find the Bayes classifier for this model (i.e. the minimizer of $L(g) = \mathbb{P}(Y \neq g(X))$ over all measurable classifiers $g : \mathbb{R}_+ \to \{0,1\}$. Give the expression of the Bayes error $L^* = L(g^*)$ in the case where $P_X = \mathcal{U}([0, \alpha \theta])$ with $\alpha > 1$. What is the value of α that maximizes L^* ?

Exercise 3 - Let $X = (T, U, V)^T$ where T, U, V IID real-valued random variables with exponential distribution $\mathcal{E}(1)$. Define $Y = \mathbb{I}\{T + U + V < \theta\}$ with fixed $\theta > 0$.

- 1. Find the Bayes classifier $g^*(T, U)$ when V is not observed. Give the expression of the classification error of g^* (also called Bayes error). Compute it for $\theta = 9$.
- 2. Now assume that only T is observed, and address the same questions as above.
- 3. Propose a classifier for X when none of T, U, V are observed. What is its classification error?

Exercise 4 - Find the expressions of f_+ , f_- and η in the following probabilistic models :

— Discriminant Analysis : find η

$$f_+ = \mathcal{N}_d(\mu_+, \Sigma_+), f_- = \mathcal{N}_d(\mu_-, \Sigma_-)$$

— Logistic regression : find f_+, f_-

$$\log\left(\frac{\eta_{\theta}(x)}{1-\eta_{\theta}(x)}\right) = h(x,\theta) , \quad \text{typically } h(x,\theta) = \theta^{T} x$$

Exercise 5 - Find the optimal elements in the following cases of error measures with binary classification data :

1. Asymmetric cost - set $\omega \in (0, 1)$,

$$L_{\omega}(g) = 2\mathbb{E}\left((1-\omega)\mathbb{I}\{Y=+1\}\mathbb{I}\{g(X)=-1\}\right)$$
$$+\omega\mathbb{I}\{Y=-1\}\mathbb{I}\{g(X)=+1\}\right)$$

2. Classification with mass constraint - set $u \in (0, 1)$

$$\min_{g} \mathbb{P}(Y \neq g(X)) \quad \text{subject to} \quad \mathbb{P}(g(X) = 1) = u$$

3. Classification with reject option - set $\gamma \in (0, 1/2)$

$$L_d^R(g) = \mathbb{P}(Y \neq g(X) , g(X) \neq \mathbb{R}) + \gamma \mathbb{P}(g(X) = \mathbb{R})$$

Exercise 6 - Consider (X, Y) a random pair that models classification data with labels in $\{0, 1\}$. Define the following classification error

$$L_{\omega}(g) = \mathbb{E}\big(2\omega(Y) \cdot \mathbb{I}\{Y \neq g(X)\}\big)$$

where $\omega(0) + \omega(1) = 1$.

Consider the unit square in \mathbb{R}^2 .

- 1. Plot the curves defined by $g \mapsto (\mathbb{P}\{g(X) = 1 \mid Y = 0\}, \mathbb{P}\{g(X) = 1 \mid Y = 1\})$ when g varies such that $L_{\omega}(g) = C$ with C fixed, for different values of C.
- 2. Same question but assuming now that $\mathbb{P}\{g(X) = 1\} = C$ with C fixed.

Exercise 7 - We consider the model for classification data where X is a random vector on \mathbb{R}^d and Y is a random variable taking values in $\{-1, +1\}$. We denote $\eta(x) = \mathbb{P}\{Y = +1 \mid X = x\}$ the posterior probability. We consider the following problems for which the question is to compute the optimal decision rule g^* or f^* - please also provide the main proof arguments.

- 1. Criterion to minimize : $R(g) = \mathbb{E}((Y g(X))^2)$ where $g : \mathbb{R}^d \to \{-1, +1\}$
- 2. Criterion to minimize : $R(f) = \mathbb{E}((Y f(X))^2)$ where $f : \mathbb{R}^d \to \mathbb{R}$
- 3. Criterion to minimize : $A(f) = \mathbb{E} \exp(-Yf(X))$ where $f : \mathbb{R}^d \to \mathbb{R} \cup \{-\infty, +\infty\}$.
- 4. Criterion to minimize : $A(f) = \mathbb{E}(\log(1 + \exp(-Yf(X))))$ where $f : \mathbb{R}^d \to \mathbb{R} \cup \{-\infty, +\infty\}$.
- 5. Criterion to minimize : $A_2(f) = \mathbb{E}(\max\{0, 1 Yf(X)\})$ where $f : \mathbb{R}^d \to \mathbb{R}$.

Explain why such criteria are relevant for the binary classification problem.

Exercice 8 - Consider IID random pairs (X, Y) and (X', Y') over $\mathbb{R}^d \times \mathcal{Y}$. Set the following posterior probabilities :

$$\forall x, x' \in \mathbb{R}^d, \quad \rho_+(x, x') = \mathbb{P}\{Y - Y' > 0 \mid X = x, X' = x'\} \\ \rho_-(x, x') = \mathbb{P}\{Y - Y' < 0 \mid X = x, X' = x'\}$$

and for any preference rule $\pi : \mathbb{R}^d \times \mathbb{R}^d \to \{-1, 0, 1\}$, consider the pairwise error measure

$$L(\pi) = \mathbb{P}\left\{ (Y - Y') \cdot \pi(X, X') < 0 \right\}$$

- 1. Find the Bayes rule π^* and the Bayes error $L^* = L(\pi^*)$ for this problem, as well as the excess of risk $L(\pi) L^*$ for any preference rule π (will involve ρ_+ and ρ_-).
- 2. Assume $\mathcal{Y} = \{-1, +1\}$ and denote by $\eta(x) = \mathbb{P}\{Y = +1 \mid X = x\}$. Provide the expressions for $\rho_+(x, x')$ and $\rho_-(x, x')$ and discuss how the behavior of η could lead to difficult situations for the learning process to be efficient.
- 3. Assume now that $\mathcal{Y} = \mathbb{R}$ and that $Y = m(X) + \sigma(X) \cdot N$ where *m* and σ are P_X -measurable functions, *N* is a random noise variable with normal distribution $\mathcal{N}(0,1)$, while *N* and *X* are independent random variables. Provide the expressions for $\rho_+(x,x')$ and $\rho_-(x,x')$ in this case and discuss the relation between properties of the model and the learning process.