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Introduction to Statistical Learning

Exercise set n. 2

Definitions

Let F be a class of bounded real-valued functions and A a class of subsets of Rd.

— Bounded differences function - A real-valued function h of n variables over a metric
space Z is said to be a function with bounded differences if there exist c1, . . . , cn > 0
such that :

sup
z1,...,zn,z′i∈Z

|h(z1, . . . , zn)− h(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ ci

— McDiarmid’s concentration inequality - Assume h is a function with bounded dif-
ferences with bounding constants c1, . . . , cn then, we have, for any t > 0

P
(
h(Z1, . . . , Zn)− E

(
h(Z1, . . . , Zn)

)
> t
)
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
and

P
(
h(Z1, . . . , Zn)− E

(
h(Z1, . . . , Zn)

)
< −t

)
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
— The empirical Rademacher complexity of F wrt to the sample Dn = {Z1, . . . , Zn}

is defined as :

R̂n(F) = E

(
sup
f∈F

1

n

n∑
i=1

εif(Zi)

∣∣∣∣∣Dn

)

— The Rademacher complexity of F is defined as :

Rn(F) = E
(
R̂n(F)

)
— Trace Tr(A,xn

1 ) of A over a set of point xn
1 = {x1, . . . , xn} in Rd :

Tr(A,xn
1 ) = {A ∩ xn

1 : A ∈ A}

— Growth function n 7→ γ(A, n) of A

γ(A, n) = max
xn
1

|Tr(A,xn
1 )|

where | · | denotes the cardinality of the set.

— Vapnik-Chervonenkis dimension V (A) or VC dimension of A

V (A) = maxn ∈ N : s(A, n) = 2n
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Exercise 1

1. (Hoeffing’s lemma) Consider Z a random variable such that : E(Z) = 0 and P(Z ∈
[a, b]) = 1 almost surely. Prove the following upper bound : for any s > 0,

E
(
esZ
)
≤ exp

(
s2(b− a)2

8

)

2. (Hoeffing’s inequality) Consider Z1, . . . , Zn IID over [0, 1] and Zn =
1

n

n∑
i=1

Zi. Show

that we have, for any t > 0

P{Zn − E(Z1) > t} ≤ exp(−2nt2)

and
P{Zn − E(Z1) < −t} ≤ exp(−2nt2)

Exercise 2

1. (Azuma’s inequality) Consider V = (V1, . . . , Vn, ...) and Z = (Z1, . . . , Zn, ...) two
sequences of random variables. We assume the following : for any n ≥ 1,

— Vn is a function of Z1, . . . , Zn

— E(Vn+1 | Z1, . . . , Zn) = 0
— there exists cn ≥ 0 such that : Zn ≤ Vn ≤ Zn + cn

Prove that, for any t > 0

P

(
n∑

i=1

Vi > t

)
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
and

P

(
n∑

i=1

Vi < −t

)
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
2. (McDiarmid’s inequality) Use the previous question to prove McDiarmid’s inequa-

lity.

Exercise 3 - (Application of McDiarmid’s concentration inequality) Let F be a
class of [0, 1]-valued functions. Show that, with probability at least 1− δ :

Rn(F) ≤ R̂n(F) +

√
log(1/δ)

2n

and also that :

sup
f∈F

(
E
(
f(Z1)

)
− 1

n

n∑
i=1

f(Zi)

)
≤ 2R̂n(F) + 3

√
log(2/δ)

2n
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Exercise 4 - (Sauer’s lemma) Consider A a class of subsets of Rd with VC dimension
V < +∞ and growth function γ(A, n), ∀n ≥ 1. Show that :

∀n ≥ 1 , γ(A, n) ≤
V∑
i=0

(
n
i

)
.

Exercice 5 - (VC dimension of half-spaces) Consider the class A of half-spaces in Rd

and show that its VC dimension V (A) = d+ 1.

Hint : first prove the upper bound by Radon’s theorem, and then build a separating hyper-
plane for any arbitrary labeling for some set of d+ 1 points.

Exercice 6 - Compute the VC dimension V (A) in the following cases :
(a) A = { ]−∞, x1]× . . .×]−∞, xd] : (x1, . . . , xd) ∈ Rd } ,
(b) A is the class of all rectangles of R2 with axis-orthogonal edges.
(c) A is the class of all rectangles of R2.
(d) A is the class of all triangles of R2.
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