\qquad

Introduction to Statistical Learning

Exercise set n. 2

Definitions

Let \mathcal{F} be a class of bounded real-valued functions and \mathcal{A} a class of subsets of \mathbb{R}^{d}.

- Bounded differences function - A real-valued function h of n variables over a metric space \mathcal{Z} is said to be a function with bounded differences if there exist $c_{1}, \ldots, c_{n}>0$ such that:

$$
\sup _{z_{1}, \ldots, z_{n}, z_{i}^{\prime} \in \mathcal{Z}}\left|h\left(z_{1}, \ldots, z_{n}\right)-h\left(z_{1}, \ldots, z_{i-1}, z_{i}^{\prime}, z_{i+1}, \ldots, z_{n}\right)\right| \leq c_{i}
$$

- McDiarmid's concentration inequality - Assume h is a function with bounded differences with bounding constants c_{1}, \ldots, c_{n} then, we have, for any $t>0$

$$
\mathbb{P}\left(h\left(Z_{1}, \ldots, Z_{n}\right)-\mathbb{E}\left(h\left(Z_{1}, \ldots, Z_{n}\right)\right)>t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

and

$$
\mathbb{P}\left(h\left(Z_{1}, \ldots, Z_{n}\right)-\mathbb{E}\left(h\left(Z_{1}, \ldots, Z_{n}\right)\right)<-t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

- The empirical Rademacher complexity of \mathcal{F} wrt to the sample $D_{n}=\left\{Z_{1}, \ldots, Z_{n}\right\}$ is defined as :

$$
\widehat{R}_{n}(\mathcal{F})=\mathbb{E}\left(\left.\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(Z_{i}\right) \right\rvert\, D_{n}\right)
$$

- The Rademacher complexity of \mathcal{F} is defined as :

$$
R_{n}(\mathcal{F})=\mathbb{E}\left(\widehat{R}_{n}(\mathcal{F})\right)
$$

- $\operatorname{Trace} \operatorname{Tr}\left(\mathcal{A}, \mathbf{x}_{1}^{n}\right)$ of \mathcal{A} over a set of point $\mathbf{x}_{1}^{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathbb{R}^{d} :

$$
\operatorname{Tr}\left(\mathcal{A}, \mathbf{x}_{1}^{n}\right)=\left\{A \cap \mathbf{x}_{1}^{n}: \quad A \in \mathcal{A}\right\}
$$

- Growth function $n \mapsto \gamma(\mathcal{A}, n)$ of \mathcal{A}

$$
\gamma(\mathcal{A}, n)=\max _{\mathbf{x}_{1}^{n}}\left|\operatorname{Tr}\left(\mathcal{A}, \mathbf{x}_{1}^{n}\right)\right|
$$

where $|\cdot|$ denotes the cardinality of the set.

- Vapnik-Chervonenkis dimension $V(\mathcal{A})$ or VC dimension of \mathcal{A}

$$
V(\mathcal{A})=\max n \in \mathbb{N}: s(\mathcal{A}, n)=2^{n}
$$

Exercise 1

1. (Hoeffing's lemma) Consider Z a random variable such that: $\mathbb{E}(Z)=0$ and $\mathbb{P}(Z \in$ $[a, b])=1$ almost surely. Prove the following upper bound : for any $s>0$,

$$
\mathbb{E}\left(e^{s Z}\right) \leq \exp \left(\frac{s^{2}(b-a)^{2}}{8}\right)
$$

2. (Hoeffing's inequality) Consider Z_{1}, \ldots, Z_{n} IID over $[0,1]$ and $\bar{Z}_{n}=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$. Show that we have, for any $t>0$

$$
\mathbb{P}\left\{\bar{Z}_{n}-\mathbb{E}\left(Z_{1}\right)>t\right\} \leq \exp \left(-2 n t^{2}\right)
$$

and

$$
\mathbb{P}\left\{\bar{Z}_{n}-\mathbb{E}\left(Z_{1}\right)<-t\right\} \leq \exp \left(-2 n t^{2}\right)
$$

Exercise 2

1. (Azuma's inequality) Consider $V=\left(V_{1}, \ldots, V_{n}, \ldots\right)$ and $Z=\left(Z_{1}, \ldots, Z_{n}, \ldots\right)$ two sequences of random variables. We assume the following : for any $n \geq 1$,

- V_{n} is a function of Z_{1}, \ldots, Z_{n}
$-\mathbb{E}\left(V_{n+1} \mid Z_{1}, \ldots, Z_{n}\right)=0$
- there exists $c_{n} \geq 0$ such that: $Z_{n} \leq V_{n} \leq Z_{n}+c_{n}$

Prove that, for any $t>0$

$$
\mathbb{P}\left(\sum_{i=1}^{n} V_{i}>t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

and

$$
\mathbb{P}\left(\sum_{i=1}^{n} V_{i}<-t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

2. (McDiarmid's inequality) Use the previous question to prove McDiarmid's inequality.

Exercise 3-(Application of McDiarmid's concentration inequality) Let \mathcal{F} be a class of $[0,1]$-valued functions. Show that, with probability at least $1-\delta$:

$$
R_{n}(\mathcal{F}) \leq \widehat{R}_{n}(\mathcal{F})+\sqrt{\frac{\log (1 / \delta)}{2 n}}
$$

and also that :

$$
\sup _{f \in \mathcal{F}}\left(\mathbb{E}\left(f\left(Z_{1}\right)\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(Z_{i}\right)\right) \leq 2 \widehat{R}_{n}(\mathcal{F})+3 \sqrt{\frac{\log (2 / \delta)}{2 n}}
$$

Exercise 4- (Sauer's lemma) Consider \mathcal{A} a class of subsets of \mathbb{R}^{d} with VC dimension $V<+\infty$ and growth function $\gamma(\mathcal{A}, n), \forall n \geq 1$. Show that :

$$
\forall n \geq 1, \quad \gamma(\mathcal{A}, n) \leq \sum_{i=0}^{V}\binom{n}{i} .
$$

Exercice 5 - (VC dimension of half-spaces) Consider the class \mathcal{A} of half-spaces in \mathbb{R}^{d} and show that its VC dimension $V(\mathcal{A})=d+1$.
Hint : first prove the upper bound by Radon's theorem, and then build a separating hyperplane for any arbitrary labeling for some set of $d+1$ points.

Exercice 6 - Compute the VC dimension $V(\mathcal{A})$ in the following cases :
(a) $\left.\left.\left.\left.\mathcal{A}=\{]-\infty, x_{1}\right] \times \ldots \times\right]-\infty, x_{d}\right]:\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}\right\}$,
(b) \mathcal{A} is the class of all rectangles of \mathbb{R}^{2} with axis-orthogonal edges.
(c) \mathcal{A} is the class of all rectangles of \mathbb{R}^{2}.
(d) \mathcal{A} is the class of all triangles of \mathbb{R}^{2}.

