Introduction to Statistical Learning

Exercise set n. 2

DEFINITIONS

Let \mathcal{F} be a class of bounded real-valued functions and \mathcal{A} a class of subsets of \mathbb{R}^d .

— Bounded differences function - A real-valued function h of n variables over a metric space \mathcal{Z} is said to be a function with bounded differences if there exist $c_1, \ldots, c_n > 0$ such that :

$$\sup_{z_1,\dots,z_n,z'_i \in \mathcal{Z}} |h(z_1,\dots,z_n) - h(z_1,\dots,z_{i-1},z'_i,z_{i+1},\dots,z_n)| \le c_i$$

— McDiarmid's concentration inequality - Assume h is a function with bounded differences with bounding constants c_1, \ldots, c_n then, we have, for any t > 0

$$\mathbb{P}\left(h(Z_1,\ldots,Z_n) - \mathbb{E}\left(h(Z_1,\ldots,Z_n)\right) > t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

and

$$\mathbb{P}\left(h(Z_1,\ldots,Z_n) - \mathbb{E}\left(h(Z_1,\ldots,Z_n)\right) < -t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)$$

— The empirical Rademacher complexity of \mathcal{F} wrt to the sample $D_n = \{Z_1, \ldots, Z_n\}$ is defined as :

$$\widehat{R}_n(\mathcal{F}) = \mathbb{E}\left(\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(Z_i) \middle| D_n\right)$$

— The Rademacher complexity of \mathcal{F} is defined as :

$$R_n(\mathcal{F}) = \mathbb{E}\big(\widehat{R}_n(\mathcal{F})\big)$$

— Trace $\operatorname{Tr}(\mathcal{A}, \mathbf{x}_1^n)$ of \mathcal{A} over a set of point $\mathbf{x}_1^n = \{x_1, \dots, x_n\}$ in \mathbb{R}^d :

$$\operatorname{Tr}(\mathcal{A}, \mathbf{x}_1^n) = \{A \cap \mathbf{x}_1^n : A \in \mathcal{A}\}$$

— Growth function $n \mapsto \gamma(\mathcal{A}, n)$ of \mathcal{A}

$$\gamma(\mathcal{A}, n) = \max_{\mathbf{x}_1^n} |\mathrm{Tr}(\mathcal{A}, \mathbf{x}_1^n)|$$

where $|\cdot|$ denotes the cardinality of the set.

— Vapnik-Chervonenkis dimension $V(\mathcal{A})$ or VC dimension of \mathcal{A}

$$V(\mathcal{A}) = \max n \in \mathbb{N} : s(\mathcal{A}, n) = 2^n$$

Exercise 1

1. (Hoeffing's lemma) Consider Z a random variable such that : $\mathbb{E}(Z) = 0$ and $\mathbb{P}(Z \in [a, b]) = 1$ almost surely. Prove the following upper bound : for any s > 0,

$$\mathbb{E}(e^{sZ}) \le \exp\left(\frac{s^2(b-a)^2}{8}\right)$$

2. (Hoeffing's inequality) Consider Z_1, \ldots, Z_n IID over [0, 1] and $\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$. Show that we have, for any t > 0

$$\mathbb{P}\{\overline{Z}_n - \mathbb{E}(Z_1) > t\} \le \exp(-2nt^2)$$

and

$$\mathbb{P}\{\overline{Z}_n - \mathbb{E}(Z_1) < -t\} \le \exp(-2nt^2)$$

Exercise 2

- 1. (Azuma's inequality) Consider $V = (V_1, \ldots, V_n, \ldots)$ and $Z = (Z_1, \ldots, Z_n, \ldots)$ two sequences of random variables. We assume the following : for any $n \ge 1$,
 - V_n is a function of Z_1, \ldots, Z_n
 - $\mathbb{E}(V_{n+1} \mid Z_1, \dots, Z_n) = 0$
 - there exists $c_n \ge 0$ such that $: Z_n \le V_n \le Z_n + c_n$ Prove that, for any t > 0

$$\mathbb{P}\left(\sum_{i=1}^{n} V_i > t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} c_i^2}\right)$$

and

$$\mathbb{P}\left(\sum_{i=1}^{n} V_i < -t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} c_i^2}\right)$$

2. (McDiarmid's inequality) Use the previous question to prove McDiarmid's inequality.

Exercise 3 - (Application of McDiarmid's concentration inequality) Let \mathcal{F} be a class of [0, 1]-valued functions. Show that, with probability at least $1 - \delta$:

$$R_n(\mathcal{F}) \le \widehat{R}_n(\mathcal{F}) + \sqrt{\frac{\log(1/\delta)}{2n}}$$

and also that :

$$\sup_{f \in \mathcal{F}} \left(\mathbb{E}(f(Z_1)) - \frac{1}{n} \sum_{i=1}^n f(Z_i) \right) \le 2\widehat{R}_n(\mathcal{F}) + 3\sqrt{\frac{\log(2/\delta)}{2n}}$$

Exercise 4 - (Sauer's lemma) Consider \mathcal{A} a class of subsets of \mathbb{R}^d with VC dimension $V < +\infty$ and growth function $\gamma(\mathcal{A}, n), \forall n \geq 1$. Show that :

$$\forall n \ge 1 , \ \gamma(\mathcal{A}, n) \le \sum_{i=0}^{V} \left(\begin{array}{c} n \\ i \end{array} \right) \; .$$

Exercice 5 - (VC dimension of half-spaces) Consider the class \mathcal{A} of half-spaces in \mathbb{R}^d and show that its VC dimension $V(\mathcal{A}) = d + 1$.

Hint : first prove the upper bound by Radon's theorem, and then build a separating hyperplane for any arbitrary labeling for some set of d + 1 points.

Exercice 6 - Compute the VC dimension $V(\mathcal{A})$ in the following cases :

- (a) $\mathcal{A} = \{] \infty, x_1] \times \ldots \times] \infty, x_d] : (x_1, \ldots, x_d) \in \mathbb{R}^d \}$, (b) \mathcal{A} is the class of all rectangles of \mathbb{R}^2 with axis-orthogonal edges.
- (c) \mathcal{A} is the class of all rectangles of \mathbb{R}^2 .
- (d) \mathcal{A} is the class of all triangles of \mathbb{R}^2 .