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Introduction to Statistical Learning

Exercise set # 4

Exercise 1 - (Rademacher average for neural networks) Consider an i.i.d. sample
X1, . . . , Xn of observations over the space X and F0 is a set of real-valued functions over
X that includes the zero function. Assume ψ : R → R is k-Lispchitz and define, for fixed
positive real numbers V and B :

— the class F0 is a linear perceptron with bounded weights : F0 = {x 7→ wTx : ∥w∥1 ≤
B}

— a one layer network as : F1 = {x 7→ ψ(v+
∑m

j=1wjfj(x)) : |v| ≤ V, ∥w∥1 ≤ B, fj ∈
F0}

— a p-layer network as (iterative definition with fixed layer size) : Fp = {x 7→ ψ(v +∑m
j=1wjfj(x)) : |v| ≤ V, ∥w∥1 ≤ B, fj ∈ Fp−1}

Prove the following upper bounds on the empirical Rademacher average :

1. R̂n(F1) ≤ k

(
V√
n
+ 2BR̂n(F0)

)
.

2. We assume now that X is the ℓ∞ unit ball : X = {x ∈ Rd : ∥x∥∞ ≤ 1} and show
that :

R̂n(F0) ≤
B
√

2 ln(2d)√
n

3. Assume in addition that ψ(−u) = −ψ(u) and k = 1 then show that on X = {x ∈
Rd, ∥x∥∞ ≤ 1} :

R̂n(Fp) ≤
1√
n

(
Bp+1

√
2 ln(2d) + V

p−1∑
l=0

Bl

)
.
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Exercise 2 - [φ-risk analysis of boosting] Consider λ > 0 and G a family of {−1,+1}-
classifiers with finite VC dimension V . We introduce the λ-blown-up convex hull of G to
be defined as :

Fλ =

f =
N∑
j=1

wjgj : N ∈ N, gj ∈ G, wj ∈ R,
N∑
j=1

|wj | ≤ λ


1. Consider X1, . . . , Xn an IID sample in Rd and recall the definition of the Radema-

cher average :

Rn

(
Fλ

)
= E

(
sup
f∈Fλ

1

n

n∑
i=1

εif(Xi)

)
where ε1, . . . , εn are IID Rademacher random variables, and they also are inde-
pendent of X1, . . . , Xn. Provide an upper bound of Rn

(
Fλ

)
that depends on V , n,

and λ and give the main arguments of the computation.

2. Set φ(x) = log2
(
1+exp(x)

)
and consider the convex cost function A(f) = Eφ(−Y ·

f(X)). Define f∗ the optimal element wrt to the functional A and find an explicit
function H such that :

A(f∗) = E(H(η(X)))

3. State some simple properties of H and find c > 0 such that : for any t ∈ [0, 1], we
have

H(t) ≤ 1−
(
1− 2t

2c

)2

4. We introduce : L(f) = P(Y · f(X) < 0) and L∗ its optimal value. Find α such that
the ratio (L(f)− L∗)/(A(f)−A∗)α is uniformly bounded over all f ’s.

5. We set Ân to be the empirical version of A. Show that, with probability at least
1− δ :

sup
f∈Fλ

|Ân(f)−A(f)| ≤ c1(λ)

√
V log(en/V )

n
+ c2(λ)

√
log(1/δ)

n

where c1 and c2 will be found explicitly.

6. Consider f̂n,λ the minimizer of Ân over Fλ. Provide an explicit upper bound on its

classification error L
(
f̂n,λ

)
−L∗ which will depend on V , n, and λ, but also on the

approximation error wrt to the convex risk : inff∈Fλ
A(f)−A∗.
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Exercice 3 - [Margin analysis for preference learning] Consider the setup of preference
learning where we observe an IID sample of triples (X1, X

′
1, Y1), . . . , (Xn, X

′
n, Yn). The

probabilistic model assumes that, for each i, the triple (Xi, X
′
i, Yi) is such that Xi, X

′
i are

IID random vectors over Rd and Yi is a random variable over {−1, 0,+1}. We define the
ranking error of a preference rule g : Rd → {−1, 0,+1} as :

LR(g) = P{Y ̸= 0, Y · (g(X ′)− g(X)) ≤ 0}

and the empirical margin ranking error as :

L̂R
n,ρ(g) =

1

n

n∑
i=1

φρ(Yi · (g(X ′
i)− g(Xi)) .

Now consider a class G of preference rules and define :

G̃ = {(x, x′, y) 7→ y(g(x′)− g(x)) : g ∈ G} .

1. Provide an upper bound of the empirical Rademacher average of G̃ in terms of the
empirical Rademacher average of G.

2. Which inequality relates the empirical Rademacher average of the loss class φρ ◦ G̃
to the empirical Rademacher average of G̃ ? Provide a proof of this inequality.

3. Show that, for any δ ∈ (0, 1), we have, with probability at least 1−δ : for any g ∈ G

E(φρ(y(g(x
′)− g(x))) ≤ L̂R

n,ρ(g) + c1R̂n(mρ ◦ G̃) + c2(n, δ)

for some c1 and c2(n, δ) that will have to be given explicitly.

4. Deduce from the previous question a margin error bound for LR(g) that holds with
large probability for any g ∈ G and which involves the empirical ranking error of g
over the sample and the complexity of G.
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