\qquad

Introduction to Statistical Learning

Exercise set \# 4

Exercise 1-(Rademacher average for neural networks) Consider an i.i.d. sample X_{1}, \ldots, X_{n} of observations over the space \mathcal{X} and \mathcal{F}_{0} is a set of real-valued functions over \mathcal{X} that includes the zero function. Assume $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is k-Lispchitz and define, for fixed positive real numbers V and B :

- the class \mathcal{F}_{0} is a linear perceptron with bounded weights: $\mathcal{F}_{0}=\left\{x \mapsto w^{T} x:\|w\|_{1} \leq\right.$ B\}
- a one layer network as : $\mathcal{F}_{1}=\left\{x \mapsto \psi\left(v+\sum_{j=1}^{m} w_{j} f_{j}(x)\right):|v| \leq V,\|w\|_{1} \leq B, f_{j} \in\right.$ \mathcal{F}_{0} \}
- a p-layer network as (iterative definition with fixed layer size) : $\mathcal{F}_{p}=\{x \mapsto \psi(v+$ $\left.\left.\sum_{j=1}^{m} w_{j} f_{j}(x)\right):|v| \leq V,\|w\|_{1} \leq B, f_{j} \in \mathcal{F}_{p-1}\right\}$
Prove the following upper bounds on the empirical Rademacher average :

1. $\hat{R}_{n}\left(\mathcal{F}_{1}\right) \leq k\left(\frac{V}{\sqrt{n}}+2 B \hat{R}_{n}\left(\mathcal{F}_{0}\right)\right)$.
2. We assume now that \mathcal{X} is the ℓ_{∞} unit ball : $\mathcal{X}=\left\{x \in \mathbb{R}^{d}:\|x\|_{\infty} \leq 1\right\}$ and show that:

$$
\hat{R}_{n}\left(\mathcal{F}_{0}\right) \leq \frac{B \sqrt{2 \ln (2 d)}}{\sqrt{n}}
$$

3. Assume in addition that $\psi(-u)=-\psi(u)$ and $k=1$ then show that on $\mathcal{X}=\{x \in$ $\left.\mathbb{R}^{d},\|x\|_{\infty} \leq 1\right\}:$

$$
\hat{R}_{n}\left(\mathcal{F}_{p}\right) \leq \frac{1}{\sqrt{n}}\left(B^{p+1} \sqrt{2 \ln (2 d)}+V \sum_{l=0}^{p-1} B^{l}\right) .
$$

Exercise 2 - [φ-risk analysis of boosting] Consider $\lambda>0$ and \mathcal{G} a family of $\{-1,+1\}$ classifiers with finite VC dimension V. We introduce the λ-blown-up convex hull of \mathcal{G} to be defined as :

$$
\mathcal{F}_{\lambda}=\left\{f=\sum_{j=1}^{N} w_{j} g_{j}: N \in \mathbb{N}, g_{j} \in \mathcal{G}, w_{j} \in \mathbb{R}, \sum_{j=1}^{N}\left|w_{j}\right| \leq \lambda\right\}
$$

1. Consider X_{1}, \ldots, X_{n} an IID sample in \mathbb{R}^{d} and recall the definition of the Rademacher average :

$$
R_{n}\left(\mathcal{F}_{\lambda}\right)=\mathbb{E}\left(\sup _{f \in \mathcal{F}_{\lambda}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(X_{i}\right)\right)
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are IID Rademacher random variables, and they also are independent of X_{1}, \ldots, X_{n}. Provide an upper bound of $R_{n}\left(\mathcal{F}_{\lambda}\right)$ that depends on V, n, and λ and give the main arguments of the computation.
2. Set $\varphi(x)=\log _{2}(1+\exp (x))$ and consider the convex cost function $A(f)=\mathbb{E} \varphi(-Y$. $f(X)$). Define f^{*} the optimal element wrt to the functional A and find an explicit function H such that:

$$
A\left(f^{*}\right)=\mathbb{E}(H(\eta(X)))
$$

3. State some simple properties of H and find $c>0$ such that : for any $t \in[0,1]$, we have

$$
H(t) \leq 1-\left(\frac{1-2 t}{2 c}\right)^{2}
$$

4. We introduce : $L(f)=\mathbb{P}(Y \cdot f(X)<0)$ and L^{*} its optimal value. Find α such that the ratio $\left(L(f)-L^{*}\right) /\left(A(f)-A^{*}\right)^{\alpha}$ is uniformly bounded over all f 's.
5. We set \widehat{A}_{n} to be the empirical version of A. Show that, with probability at least $1-\delta$:

$$
\sup _{f \in \mathcal{F}_{\lambda}}\left|\widehat{A}_{n}(f)-A(f)\right| \leq c_{1}(\lambda) \sqrt{\frac{V \log (e n / V)}{n}}+c_{2}(\lambda) \sqrt{\frac{\log (1 / \delta)}{n}}
$$

where c_{1} and c_{2} will be found explicitly.
6. Consider $\widehat{f}_{n, \lambda}$ the minimizer of \widehat{A}_{n} over \mathcal{F}_{λ}. Provide an explicit upper bound on its classification error $L\left(\widehat{f}_{n, \lambda}\right)-L^{*}$ which will depend on V, n, and λ, but also on the approximation error wrt to the convex risk : $\inf _{f \in \mathcal{F}_{\lambda}} A(f)-A^{*}$.

Exercice 3- [Margin analysis for preference learning] Consider the setup of preference learning where we observe an IID sample of triples $\left(X_{1}, X_{1}^{\prime}, Y_{1}\right), \ldots,\left(X_{n}, X_{n}^{\prime}, Y_{n}\right)$. The probabilistic model assumes that, for each i, the triple $\left(X_{i}, X_{i}^{\prime}, Y_{i}\right)$ is such that X_{i}, X_{i}^{\prime} are IID random vectors over \mathbb{R}^{d} and Y_{i} is a random variable over $\{-1,0,+1\}$. We define the ranking error of a preference rule $g: \mathbb{R}^{d} \rightarrow\{-1,0,+1\}$ as :

$$
L^{R}(g)=\mathbb{P}\left\{Y \neq 0, Y \cdot\left(g\left(X^{\prime}\right)-g(X)\right) \leq 0\right\}
$$

and the empirical margin ranking error as :

$$
\widehat{L}_{n, \rho}^{R}(g)=\frac{1}{n} \sum_{i=1}^{n} \varphi_{\rho}\left(Y_{i} \cdot\left(g\left(X_{i}^{\prime}\right)-g\left(X_{i}\right)\right) .\right.
$$

Now consider a class \mathcal{G} of preference rules and define :

$$
\widetilde{\mathcal{G}}=\left\{\left(x, x^{\prime}, y\right) \mapsto y\left(g\left(x^{\prime}\right)-g(x)\right): g \in \mathcal{G}\right\} .
$$

1. Provide an upper bound of the empirical Rademacher average of $\widetilde{\mathcal{G}}$ in terms of the empirical Rademacher average of \mathcal{G}.
2. Which inequality relates the empirical Rademacher average of the loss class $\varphi_{\rho} \circ \widetilde{\mathcal{G}}$ to the empirical Rademacher average of $\widetilde{\mathcal{G}}$? Provide a proof of this inequality.
3. Show that, for any $\delta \in(0,1)$, we have, with probability at least $1-\delta:$ for any $g \in \mathcal{G}$

$$
\mathbb{E}\left(\varphi_{\rho}\left(y\left(g\left(x^{\prime}\right)-g(x)\right)\right) \leq \widehat{L}_{n, \rho}^{R}(g)+c_{1} \hat{R}_{n}\left(m_{\rho} \circ \tilde{\mathcal{G}}\right)+c_{2}(n, \delta)\right.
$$

for some c_{1} and $c_{2}(n, \delta)$ that will have to be given explicitly.
4. Deduce from the previous question a margin error bound for $L^{R}(g)$ that holds with large probability for any $g \in \mathcal{G}$ and which involves the empirical ranking error of g over the sample and the complexity of \mathcal{G}.

