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Introduction to Statistical Learning

Exercise set # 4

Exercise 1 - (Rademacher average for neural networks) Consider an i.i.d. sample
X1,...,X, of observations over the space X and Fy is a set of real-valued functions over
X that includes the zero function. Assume ¢ : R — R is k-Lispchitz and define, for fixed
positive real numbers V' and B :
— the class Jy is a linear perceptron with bounded weights : Fo = {z — v’z : |Jw|; <
B}
— aone layer network as : Fi = {z — ¢Y(v+3_7" w;ifj(x)) : o] <V, |lwli < B, f; €
Fo}
— a p-layer network as (iterative definition with fixed layer size) : F, = {z — ¢ (v +
Yl wifi(@) : ol <V |wlly < B, fj € Fpa}

Prove the following upper bounds on the empirical Rademacher average :

L Bo(F) <k (V + 2BRn(]-“O)> |

Vn
2. We assume now that X is the £, unit ball : X = {z € R : |z|ls < 1} and show
that :
. B+/21n(2d)
R, (Fo) < ——F——
3. Assume in addition that ¥(—u) = —¢(u) and k = 1 then show that on X = {z €
RY, ol <1}

n

R 1 p1
R, (Fp) < (Bp+1\/21n(2d) + VZBZ> .
=0

B
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Exercise 2 - [p-risk analysis of boosting] Consider A > 0 and G a family of {—1,+1}-
classifiers with finite VC dimension V. We introduce the A-blown-up convex hull of G to
be defined as :

N N
f)\: f:ZngJ : NGN, gjeg7 ijR, Z|wj‘§>\
j=1 =1

1. Consider X1, ..., X, an IID sample in R% and recall the definition of the Radema-
cher average :

1 n
R, (F\) =E (fseug - ; Eif(Xi)>

where €1,...,e, are IID Rademacher random variables, and they also are inde-
pendent of Xi,...,X,. Provide an upper bound of R, (.7-}) that depends on V, n,
and A and give the main arguments of the computation.

2. Set ¢(z) = logy (14 exp(z)) and consider the convex cost function A(f) = Ep(-Y -
f(X)). Define f* the optimal element wrt to the functional A and find an explicit
function H such that :

A(f") = E(H(n(X)))

3. State some simple properties of H and find ¢ > 0 such that : for any ¢ € [0, 1], we

have )
1-—2¢
Ht) <1-— ( )
2c

4. We introduce : L(f) =P(Y - f(X) < 0) and L* its optimal value. Find « such that
the ratio (L(f) — L*)/(A(f) — A*)® is uniformly bounded over all f’s.

5. We set En to be the empirical version of A. Show that, with probability at least
1-6:

sup [7,() — AW < er(0)g LB o) /08 L0)

fEF n n
where ¢; and co will be found explicitly.

6. Consider fn » the minimizer of A\n over F)y. Provide an explicit upper bound on its

classification error L(ﬁl ,\) — L* which will depend on V', n, and A, but also on the
approximation error wrt to the convex risk : infrc 7, A(f) — A*.
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Exercice 3 - [Margin analysis for preference learning] Consider the setup of preference
learning where we observe an IID sample of triples (X3, X{,Y1),...,(Xn, X,,Y,). The
probabilistic model assumes that, for each ¢, the triple (X;, X/,Y;) is such that X;, X/ are
IID random vectors over R? and Y; is a random variable over {—1,0,+1}. We define the
ranking error of a preference rule g : R% — {-1,0,+1} as :

Lf(g) =P{Y #0, Y- (9(X') — g(X)) < 0}

and the empirical margin ranking error as :
TR 1 ¢ ’
L y(9) =~ > ep(Yi- (9(X]) — 9(X)) -
i=1

Now consider a class G of preference rules and define :

G ={(z,2",y) = ylg(a') — g(x)) : g€G}.

1. Provide an upper bound of the empirical Rademacher average of G in terms of the
empirical Rademacher average of G.

2. Which inequality relates the empirical Rademacher average of the loss class ¢, o G
to the empirical Rademacher average of G 7 Provide a proof of this inequality.

3. Show that, for any ¢ € (0, 1), we have, with probability at least 1—4¢ : for any g € G
E(pp(y(9(2') = 9(2))) < LY ,(9) + exBu(my 0 G) + ca(n, 6)

for some c¢; and ca(n, §) that will have to be given explicitly.

4. Deduce from the previous question a margin error bound for Lf(g) that holds with
large probability for any g € G and which involves the empirical ranking error of g
over the sample and the complexity of G.
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