Introduction to Statistical Learning

Exercise set # 4

Exercise 1 - (Rademacher average for neural networks) Consider an i.i.d. sample X_1, \ldots, X_n of observations over the space \mathcal{X} and \mathcal{F}_0 is a set of real-valued functions over \mathcal{X} that includes the zero function. Assume $\psi : \mathbb{R} \to \mathbb{R}$ is k-Lispchitz and define, for fixed positive real numbers V and B:

- the class \mathcal{F}_0 is a linear perceptron with bounded weights : $\mathcal{F}_0 = \{x \mapsto w^T x : \|w\|_1 \le B\}$
- a one layer network as : $\mathcal{F}_1 = \{x \mapsto \psi(v + \sum_{j=1}^m w_j f_j(x)) : |v| \leq V, ||w||_1 \leq B, f_j \in \mathcal{F}_0\}$
- a *p*-layer network as (iterative definition with fixed layer size) : $\mathcal{F}_p = \{x \mapsto \psi(v + \sum_{j=1}^m w_j f_j(x)) : |v| \le V, \|w\|_1 \le B, f_j \in \mathcal{F}_{p-1}\}$

Prove the following upper bounds on the empirical Rademacher average :

- 1. $\hat{R}_n(\mathcal{F}_1) \leq k \left(\frac{V}{\sqrt{n}} + 2B\hat{R}_n(\mathcal{F}_0) \right)$.
- 2. We assume now that \mathcal{X} is the ℓ_{∞} unit ball : $\mathcal{X} = \{x \in \mathbb{R}^d : ||x||_{\infty} \leq 1\}$ and show that :

$$\hat{R}_n(\mathcal{F}_0) \le \frac{B\sqrt{2\ln(2d)}}{\sqrt{n}}$$

3. Assume in addition that $\psi(-u) = -\psi(u)$ and k = 1 then show that on $\mathcal{X} = \{x \in \mathbb{R}^d, \|x\|_{\infty} \leq 1\}$:

$$\hat{R}_n(\mathcal{F}_p) \le \frac{1}{\sqrt{n}} \left(B^{p+1} \sqrt{2\ln(2d)} + V \sum_{l=0}^{p-1} B^l \right) .$$

Exercise 2 - $[\varphi$ -risk analysis of boosting] Consider $\lambda > 0$ and \mathcal{G} a family of $\{-1, +1\}$ classifiers with finite VC dimension V. We introduce the λ -blown-up convex hull of \mathcal{G} to
be defined as :

$$\mathcal{F}_{\lambda} = \left\{ f = \sum_{j=1}^{N} w_j g_j : N \in \mathbb{N}, \ g_j \in \mathcal{G}, \ w_j \in \mathbb{R}, \ \sum_{j=1}^{N} |w_j| \le \lambda \right\}$$

1. Consider X_1, \ldots, X_n an IID sample in \mathbb{R}^d and recall the definition of the Rademacher average :

$$R_n(\mathcal{F}_{\lambda}) = \mathbb{E}\left(\sup_{f \in \mathcal{F}_{\lambda}} \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i)\right)$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are *IID* Rademacher random variables, and they also are independent of X_1, \ldots, X_n . Provide an upper bound of $R_n(\mathcal{F}_{\lambda})$ that depends on V, n, and λ and give the main arguments of the computation.

2. Set $\varphi(x) = \log_2(1 + \exp(x))$ and consider the convex cost function $A(f) = \mathbb{E}\varphi(-Y \cdot f(X))$. Define f^* the optimal element wrt to the functional A and find an explicit function H such that :

$$A(f^*) = \mathbb{E}(H(\eta(X)))$$

3. State some simple properties of H and find c > 0 such that : for any $t \in [0, 1]$, we have

$$H(t) \le 1 - \left(\frac{1-2t}{2c}\right)^2$$

- 4. We introduce : $L(f) = \mathbb{P}(Y \cdot f(X) < 0)$ and L^* its optimal value. Find α such that the ratio $(L(f) L^*)/(A(f) A^*)^{\alpha}$ is uniformly bounded over all f's.
- 5. We set \widehat{A}_n to be the empirical version of A. Show that, with probability at least 1δ :

$$\sup_{f \in \mathcal{F}_{\lambda}} |\widehat{A}_n(f) - A(f)| \le c_1(\lambda) \sqrt{\frac{V \log(en/V)}{n}} + c_2(\lambda) \sqrt{\frac{\log(1/\delta)}{n}}$$

where c_1 and c_2 will be found explicitly.

6. Consider $\widehat{f}_{n,\lambda}$ the minimizer of \widehat{A}_n over \mathcal{F}_{λ} . Provide an explicit upper bound on its classification error $L(\widehat{f}_{n,\lambda}) - L^*$ which will depend on V, n, and λ , but also on the approximation error wrt to the convex risk : $\inf_{f \in \mathcal{F}_{\lambda}} A(f) - A^*$.

Exercice 3 - [Margin analysis for preference learning] Consider the setup of preference learning where we observe an IID sample of triples $(X_1, X'_1, Y_1), \ldots, (X_n, X'_n, Y_n)$. The probabilistic model assumes that, for each *i*, the triple (X_i, X'_i, Y_i) is such that X_i, X'_i are IID random vectors over \mathbb{R}^d and Y_i is a random variable over $\{-1, 0, +1\}$. We define the ranking error of a preference rule $g : \mathbb{R}^d \to \{-1, 0, +1\}$ as :

$$L^R(g) = \mathbb{P}\{Y \neq 0, \ Y \cdot (g(X') - g(X)) \le 0\}$$

and the empirical margin ranking error as :

$$\widehat{L}_{n,\rho}^{R}(g) = \frac{1}{n} \sum_{i=1}^{n} \varphi_{\rho}(Y_i \cdot (g(X_i') - g(X_i)))$$

Now consider a class ${\mathcal G}$ of preference rules and define :

$$\widetilde{\mathcal{G}} = \{(x, x', y) \mapsto y(g(x') - g(x)) : g \in \mathcal{G}\}$$

- 1. Provide an upper bound of the empirical Rademacher average of $\tilde{\mathcal{G}}$ in terms of the empirical Rademacher average of \mathcal{G} .
- 2. Which inequality relates the empirical Rademacher average of the loss class $\varphi_{\rho} \circ \widetilde{\mathcal{G}}$ to the empirical Rademacher average of $\widetilde{\mathcal{G}}$? Provide a proof of this inequality.
- 3. Show that, for any $\delta \in (0, 1)$, we have, with probability at least 1δ : for any $g \in \mathcal{G}$

$$\mathbb{E}(\varphi_{\rho}(y(g(x') - g(x))) \le \widehat{L}_{n,\rho}^{R}(g) + c_1 \widehat{R}_n(m_{\rho} \circ \widetilde{\mathcal{G}}) + c_2(n,\delta)$$

for some c_1 and $c_2(n, \delta)$ that will have to be given explicitly.

4. Deduce from the previous question a margin error bound for $L^{R}(g)$ that holds with large probability for any $g \in \mathcal{G}$ and which involves the empirical ranking error of g over the sample and the complexity of \mathcal{G} .