
Introduction to Statistical Learning

Nicolas Vayatis

Lecture # 6 - Statistical analysis of mainstream ML algorithms

Part II - Analysis of Ensemble Methods and Boosting



Reminder on Part I

Kernel methods applied to classification
(aka Support Vector Machines)



Algorithmic Principles of SVM

• Search space : soft classifiers in an RKHS (kernel k)

H(X ) ⊜

{
h =

n∑
i=1

αik(Xi , ·) : α1, . . . , αn ∈ R

}

• Regularized optimization problem : set λ > 0

ĥλ = arg min
Hk

{
n∑

i=1

(1 − Yih(Xi ))+ + λ∥h∥k

}

• Resolution of the dual formulation thanks to quadratic
optimization solvers



Theoretical analysis of SVM

• First ingredient : Complexity control
When RKHS norm bounded by M and kernel bounded by R2,
we have the bound on Rademacher complexity of kernel
classes :

R̂n(FM) ≤ MR√
n

• Second ingredient : key inequalities (concentration and
contraction or Zhang’s Lemma)

• Two theorems can be derived : margin bound or classification
error bound based on CRM



Margin bounds for SVM classification

Theorem. (Fixed margin)
Let Hk the RKHS with kernel k .

Fix ρ ∈ (0, 1), and δ > 0. Then with probability at least 1 − δ, we
have, for any SVM classifier g :

L(g) ≤ L̂n,ρ(g) + 2
(
MR

ρ
√
n

)
+

√
log(1/δ)

2n

and

L(g) ≤ L̂n,ρ(g) + 2

(
M
√

trace (K )

ρn

)
+ 3

√
log(2/δ)

2n



Interlude - The (al)most perfect algorithm

Decision trees



Algorithmic principles of Decision Trees

• Belongs to the family of local methods using (a) recursive
partitioning, and (b) label averaging (or majority voting)

• Main inputs : (1) Geometry/number of splits (perpendicular,
linear, binary or more, ...), (2) Local cost function (impurity) :
entropy, Gini, classification error, (3) Stopping criterion, (4)
with/out pruning

• Historical references : Hyafil, Rivest (1976), Breiman,
Friedman, Olshen, Stone (1984), Quinlan (1986



Construction through recursive partitioning



Stopping crirteria and tree balancing

• Hyperparameters : type/number of splits, cost function,
minimal number of points per partition cell, maximal depth of
the tree (number of layers)

• Pruning the tree : amounts to exploring the class of all
subpartitions (subtrees) and optimize a penalized criterion of
the form

arg min
c

L̂n(hc) + λ|c|

where c ⊂ ĉ is the collection of subpartitions obtained from
the learned partition by pruning from bottom to top



Theory for partition-based classifiers

• Case of fixed and regular partitions with cells which are
hypercubes of Rd with edges of length δn :

EL(ĥ(·, δn)) → L∗

under the condition : nδdn → ∞ and δn → 0 when n → ∞
(need enough data points in every cell and cell diameter go to
zero as sample size grows)

• Case of empirical data-driven partitions : Vapnik-Chervonenkis
and Rademacher theory do apply...



Take-home message on decision trees

Major limitations :

• Prediction performance below state-of-the-art methods since
the mid-90s (SVM, boosting, neural networks)

• Decision trees are extremely unstable - see Bertsimas,
Digalakis (2023) for recent improvements

• Numerical cost for the pruning step is high - as O(2L) for
binary trees where L is the number of layers of the master tree

Virtues of decision trees :

• Can handle missing/categorical data, scale change
• Can be expressed in terms of logical rule −→ explainable

machine learning



Part II. Ensemble methods
What can be saved from decision trees ?



The concept of weak classifier

• Intuition : a weak classifier performs at least slightly better
than random guessing (probability 1

2 + γ for some γ > 0 to
predict the true label).

• Formalization : weakly PAC-learnable algorithm - see Kearns
and Valiant (1989), Freund (1990), Schapire (1990)

• Typical example : decision trees with single-variable splits (aka
decision stumps) and fixed number of layers (say 3 to 7)



Definition of ensemble methods

• Consider a weak learning algorithm over a base class H of
predictors

• An ensemble method has a search space which is either

Fα =

∑
t≥1

αtht : ∀t ≥ 1, αt ∈ R, ht ∈ H)


or

F1 =

∑
t≥1

ht : ∀t ≥ 1, ht ∈ H)


• Popular ensemble methods : Bagging (Breiman (1996)),

Random forests (Amit, Geman (1997), Breiman (2000)),
Boosting (Freund, Schapire (1995))



Complexity of ensembles

• Vapnik-Chervonenkis dimension of Fα is +∞ even for base
class with finite VC dimension V

• For truncated sums (with T terms), the VC dimension is upper
bounded by 2(V + 1)(T + 1) log2(e(T + 1))

• the Rademacher average of ensembles is in O

(√
V

n

)



Ensemble of decision trees with stumps



Ensemble methods
Bagging and Random Forests



How to generate the ensemble ?
Bootstrap and aggregation

• Bagging and random forests operate on the search space

F1 =

∑
t≥1

ht : ∀t ≥ 1, ht ∈ H)


• Bagging and random forests rely on bootstrap samples of the

training data, meaning if we denote by Dn the training data,
we assume that we can sample functions ĥ1, . . . , ĥt (the
ensemble) from H conditionnally to Dn

• They differ by some different specifications of the recursive
partitioning procedure to build each tree (no pruning involved)



What is bootstrap in general ?



Randomized rules (1/2)

• For a given sample Dn = {(Xi ,Yi ) : i = 1, . . . , n}

• Introduce Z a measurable space and Z a random variable over
Z

• Conditionally on the sample Dn and on (X ,Y ), draw
independent sequences Z1, . . . ,ZB of B copies of Z

• Design a pool of decision rules ĝn,b(x) = ĝn,b(x ,Zb,Dn) for
b = 1, . . . ,B



Randomized rules (2/2)

• Voting classifier :

ĝB
n (x) = I

{
B∑

b=1

ĝn,b(x) > B/2

}
,

• Averaging classifier (which is not a randomized classifier) :

gB
n (x) = I {EZ ĝn(x ,Z ) > 1/2} .



Bagging - Breiman, 1996

• Randomization through bootstrap replicates of Dn

• Randomized rule through bagging :

gn(x ,Z ,Dn) = gn(x ,Dn(Z ))

• ... and Dn(Z ) = {(X ∗
i ,Y

∗
i ) : i = 1, . . . , n} where the points

are drawn through random sampling from Dn

• Typical sampling is sampling with replacement and
|Dn(Z )| = n



Bagging - a consistency result

• Special case with subsampling and without replicates in the
bootstrap sample

• |Dn(Z )| = N ≤ n and ...

• ... we assume N ∼ Bin(n, qn) and qn = P((Xi ,Yi ) ∈ Dn(Z ))

• Consistency of both voting classifier and averaging classifier
under assumptions :

• {gn} sequence of classifiers that is consistent for P
• nqn → ∞ when n → ∞



Bagging can render consistent rules that
are inconsistent

• Biau, Devroye and Lugosi (2008) have considered bagging
1-NN

• 1-NN is consistent if and only if L∗ ∈ {0, 1/2}

• Bagging averaged 1-NN classifier is consistent for any P if and
only if qn → 0 and nqn → ∞ when n → ∞

• Proof follows the lines of Stone theorem (cf. Devroye, Györfi,
Lugosi (1996))



Random Forest consistency

• Simplified model : the purely random forest in Biau, Devroye,
Lugosi (2008) (further work in Scornet, Biau, Vert (2015))

• Start with a tree classifier with rectangular cells with
orthogonal splits over [0, 1]d and build randomized versions as
follows :

• Draw a leave according to a uniform distribution over the set
of leaves of the tree

• Draw one split variable among the d dimensions of input space
with a uniform

• Position the split at random (uniform distribution again)
• Repeat k times splitting of terminal cells of the tree

• Result : The averaged classifier is consistent if kn → ∞ and
kn/n → 0 when n → ∞



Ensemble methods
Boosting



Historical perspective on Boosting

• Original paper : Freund and Schapire (ECML, 1995).

• Interpretation of the optimization problem solved as stochastic
gradient descent : Friedman (CSDA, 2002).

• Wald Memorial lecture (IMS, 2000) : Leo Breiman declares
that "understanding Boosting is the most important problem
in Machine Learning"

• Proofs of boosting consistency : Jiang (2004), Lugosi, G. and
Vayatis, N. (2004), Zhang (2004), Bartlett and Traskin (2007)

• Xgboost, a scalable implementation : Chen, T. and Guestrin,
C. (ACM SIGKDD, 2016).



Algorithmic principle for Boosting

• Input

• Data sample Dn = {(Xi ,Yi ) : i = 1, . . . , n} with classification
data {−1,+1}

• Base hypothesis class H of weak classifiers such as decision
trees (assumed to be symmetric, i.e. h ∈ H iff −h ∈ H)

• Iterations t = 1, . . . ,T .

• Compute weights α̂t > 0 and weak classifiers ĥt ∈ H

• Output.

• The Boosting classifier takes the sign of the following linear

combination of weak classifiers : f̂n(x) =
T∑
t=1

α̂t ĥt(x)



Weighting the data

• Boosting distributions on the data : sequence of discrete
probability distributions over {1, . . . , n} denoted by Πt , t ≥ 1

• Weighted training error : for any weak classifier h ∈ H and for
t ≥ 1

ε̂t(h) =
n∑

i=1

Πt(i)I{h(Xi ) ̸= Yi}



The AdaBoost algorithm

1 Initialization. Π1 is the uniform distribution on {1, . . . , n}

2 Boosting iterations. For t = 1, . . . ,T , find the weak
classifier such that :

ĥt = arg min
h∈H

ε̂t(h)

then set et = ε̂t(ĥt) and take the weight to be

α̂t =
1
2
log

(
1 − et
et

)
3 Boosting distribution update. For any i = 1, . . . , n,

Πt+1(i) ∝ Πt(i) exp
(
−α̂tYi · ĥt(Xi )

)



Illustration of Boosting on a toy example



Mysterious behavior of Boosting

The test error continues to drop along the iterations even though
the training error is zero −→ Regularization effect thanks to
averaging ? ?



Boosting as a CRM principle

• Boosting can be interpreted as a functional gradient descent
on the following functional :

Ân(f ) =
1
n

n∑
i=1

exp (−Yi f (Xi ))

where f is taken in a hypothesis space which is the linear span
of ’simple’ set H of classifiers.

• Exercise : why ?

Refer to : J. Friedman, “Greedy Function Approximation : A
Gradient Boosting Machine”, The Annals of Statistics, Vol. 29,
No. 5, 2001.



Which directions for the analysis of boosting ?


