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Main theoretical objectives of the course

• Take a well-known ML algorithm which operates in F : it
produces a (random) sequence of decision rules (f̂n)n≥1 in F .
Then show :

• Convergence of estimation error :

L(f̂n) → inf
F

L almost surely as n → ∞ ,

• Upper bounds : with probability at least 1 − δ, there exists
some constant c such that :

L(f̂n)− inf
F

L ≤ C (F , n) + c

√
log(1/δ)

n
,

where C (F , n)) = O(1/
√
n) after processing some

complexity/stability measure



Consistency of global methods
Neural networks



Historical perspective
on neural networks

• Cybernetics (1940s-1960s)
• Achievement : modeling and training one neuron
• Key algorithm : Linear Perceptron
• Paper : Rosenblatt (1958)

• Connectionism (1980s)
• Achievement : training one or two hidden layers
• Key algorithm : Backpropagation
• Paper : Rumelhart-Hinton-Williams (1986)

• Deep Learning (2007-....)
• Achievement : training multiple layers of representation
• Key algorithm : Stochastic gradient
• Papers : Hinton (2006), Bengio-LeCun (2007)



Principle of feedforward neural networks
Single-layer

• Form of classifier implemented by a one-hidden layer
perceptron : g = sgn(f − 1/2), where :

• f (x) = c0 +

p∑
i=1

ci · σ ◦ ψi (x) , ∀x ∈ Rd

• σ is a sigmoid,

• the ψi ’s are linear : ψi (x) = bi +

p∑
i=1

ai,jx
(j)



Principle of feedforward neural networks
Multiple-layer

• Hypothesis space : functions of the form

f (x , θ) = σm ◦ Am ◦ σm−1 ◦ ... ◦ A2 ◦ σ1 ◦ A1x

where θ =
(
A1, . . . ,Am

)
and A1, . . . ,Am are matrices



Intuition for complexity analysis : linear
arrangements



Arrangements : definition and key property

Definition.
A simple arrangement is a collection A of hyperplanes in dimension
d such that :
(i) any d hyperplanes of A have a unique point in common, and
(ii) any d + 1 hyperplanes of A have no point in common.

Theorem. (Edelsbrunner (1987))
The number of cells of a simple arrangement with cardinality
|A| = M is given by :

2M if d ≥ M

d∑
i=1

(
M
i

)
if d < M



Consistency result for ERM on
arrangements

Theorem. (Devroye, Györfi, Lugosi (1996))
The ERM classifier ĝM

n on all possible arrangements of size at most
M has expected error which converges to the Bayes error :

E
(
L
(
ĝM
n

))
→ L∗

for all distributions, as soon as M → ∞ and M = o(n/ log n).

The key argument of the proof relies on exact computation of
shattering coefficient :

γ(G, n) =
(
2(nd + 1)

)M



Comments

• More work needed to deal with data-driven arrangements (with
or without optimization)

• One hidden layer neural nets are universal approximators
(denseness results)

• Upper bounds on VC dimension available

• More theory in [Devroye, Lugosi, and Györfi, 1996] !



Consistency result for L1-error minimization



Rademacher complexity of neural networks
(Setup)

Consider an IID sample X1, . . . ,Xn of observations over some space
X and F0 is a set of real-valued functions over X that includes the
zero function.

Assume ψ : R → R is k-Lispchitz and define, for fixed positive
real numbers V and B :

• a one-layer network as :

F1 =

x 7→ ψ

v +
m∑
j=1

wj fj(x)

 : |v | ≤ V , ∥w∥1 ≤ B, fj ∈ F0


• a p-layer network as (iterative definition with fixed layer size) :

Fp =

x 7→ ψ

v +
m∑
j=1

wj fj(x)

 : |v | ≤ V , ∥w∥1 ≤ B, fj ∈ Fp−1





Rademacher complexity of neural networks
(Exercise)

Prove the following upper bounds on the empirical Rademacher
average :

1 R̂n(F1) ≤ k

(
V√
n
+ 2BR̂n(F0)

)
.

2 Assume in addition that ψ(−u) = −ψ(u) and k = 1 then
show that on X = {x ∈ Rd , ∥x∥∞ ≤ 1} :

R̂n(Fp) ≤
1√
n

(
Bp
√

2 ln(2d) + V

p−1∑
l=1

B l

)
.



Cherry on the cake

A mirror descent algorithm



Motivations

• Ensembles are defined by a set of predictors and their weights

• For bagging and random forests, weights are uniform

• In boosting weights reflect individual performance but are
determined iteratively

• Knowing the predictors, what are the optimal weights ?



Problem formulation

• Convex risk minimization under an ℓ1 constraint
• Set w 7→ A(w) to be the convex objective
• w ∈ RT

+ is the weight vector s.t. ∥w∥1 = C , for some C > 0

• Approach : fast iterative algorithm to optimize w over the
C -simplex



Setup for learning and optimization

• Vector of predictors H(x) ∈ RT

• Loss function φ : R → R+ is convex with derivative φ′

(monotone version)
• Optimization objective A(w) = E

(
φ(YwTH(X ))

)
(not

necessarily accessible)
• "Observable" : stochastic subgradient at observation (Xi ,Yi )

ui (w) = φ′(Yiw
TH(Xi ))YiH(Xi ) ∈ RT

• Insight : (fast) gradient descent in the dual space



The "mirror"

• Potential or proxy function V convex over E = (RT , ∥∥1)

• Dual space : E ∗ = (RT , ∥∥∞)

• C-simplex ∆(C ) = {w ∈ RT
+ : ∥w∥1 = C}

• The β-convex conjugate of V is defined as : for any z ∈ E ∗,
for any β > 0

Wβ(z) = sup
w∈∆(C)

(wT z − βV (w))

• Here : special case where V is the entropy proxy function,
∀w ∈ ∆(C )

V (w) = C ln(T/C ) +
T∑
j=1

w (j) lnw (j)



Mirror descent algorithm for convex risk
optimization

For i = 1, . . .
• "Temperature" parameter : Let βi = β0

√
i + 1

• Gradient updates ζi = ζi−1 + ui (wi−1)

• Mirror step : wi = −∇Wβi
(ζi )

• Averaging step : ŵi+1 = ŵi − 1
i+1(ŵi − wi )

NB : constant stepsize equal to one in this version



Upper bound on numerical convergence

• Consider a positive and convex loss φ and T ≥ 2, then

E(A(ŵn))− min
w∈∆(C)

A(w) ≤ κ(φ,C )

√
(n + 1) lnT

n

where κ(φ,C ) is explicit and tight

• Classification case : κ(φ,C ) = 2C supx∈[−C ,C ] |φ′(x)|



Background on mirror descent algorithms

• A.S. Nemirovski and D.B. Yudin. Problem Complexity and Method
Efficiency in Optimization. Wiley-Interscience, 1983.

• B.T. Polyak and A.B. Juditsky. Acceleration of stochastic
approxima-tion by averaging. SIAM J. Control Optim.,
30(4) :838–855, 1992

• A. Beck and M. Teboulle. Mirror descent and nonlinear projected
sub-gradient methods for convex optimization. Operations Research
Letters,31 :167–175, 2003.

• J. Kivinen and M.K. Warmuth. Additive versus exponentiated
gradient updates for linear prediction. Information and computation,
132(1) :1–64, 1997.

• A. Juditsky, A. Nazin, A. Tsybakov, and N. Vayatis. Recursive
Aggregation of Estimators via the Mirror Descent Algorithm with
averaging. Problems of Information Transmission , 41(4) : 368-384,
2005.



Beyond this course



Theory of ML : From 2000 to Today

• Consistency/rates/fast rates of convergence of the estimation
error for regularized learning methods : SVM (Steinwart,
2005), Boosting (Lugosi-Vayatis, 2004)(Zhang, 2004), general
surrogate losses (Bartlett, Jordan, McAuliffe, 2006)

• Theory of ranking and scoring algorithms with advanced
concentration inequalities (Clémençon-Lugosi-Vayatis, 2008)

• Other tracks with theoretical advances : multiclass
classification, ranking, multitask learning, structured
prediction...

• Other setups : online learning, learning view on game theory,
transfer learning, active learning...



Bias-variance revisited

Trade-off wrt : Search space F , sample size n, numerical tolerance ρ

[The trade-offs of Large Scale Learning, L. Bottou, O. Bousquet, 2011]



Shallow learning vs. Deep Learning



Mysteries about deep learning

• Approximation : deep better than shallow ?
• Optimization : nonconvex with millions of dimensions ( !)
• Overfitting : huge complexity



Facts about approximation theory

Comparison of Shallow vs. Deep Networks

• Poggio and Liao (2018) : approximation of compositional
functions

• Liang and Srikant (2017) : approximation of polynomial
functions

• Similar findings :
" the number of neurons needed by a shallow network to
approximate a function is exponentially larger than the cor-
responding number of neurons needed by a deep network
for a given degree of function approximation. "



The loss landscape of Deep Learning
View on a 56-layer neural network without skip-connection

From [Visualizing the Loss Landscape of Neural Nets,
H. Li, Z. Xu1, G. Taylor, C. Studer, T. Goldstein, 2018]



Facts about optimization in Deep Learning

• Under certain conditions, no poor local minima

• SGD avoids bad critical points

• Larger networks are better behaved (local minima are global)

References :

Soudry and Carmon (2016), “No bad local minima : Data independent training error guarantees for
multilayer neural networks”.
Kawaguchi (2016), “Deep learning without poor local minima”.
Haeffele and Vidal (2017), “Global optimality in neural network training”.
Janzamin, Sedghi, and Anandkumar (2015), “Beating the perils of non-convexity : Guaranteed training
of neural networks using tensor methods”.
Panageas and Piliouras (2016), “Gradient descent only converges to minimizers : Non-isolated critical
points and invariant regions”.
Brutzkus, Alon et al. (2017), “SGD Learns Over-parameterized Networks that Provably Generalize on
Linearly Separable Data”.



The theory of a double descent risk curve

How Deep Learning (and random forests) avoid overfitting

From [Reconciling modern machine learning and the bias-variance
trade-off, M. Belkin, D. Hsu, S. Ma, S. Mandal, 2018]



End of the course

Thank you !


