ENS PARIS-SACLAY Master 2 MVA

Introduction to Statistical Learning

Final exam

Duration : 2h - Lecture notes not allowed

Reminder on some definitions and results
— IID means Independent and Identically Distributed.
— Jensen’s inequality : if ¢ is a convex function, then we have ¢(E(U)) < E(¢(U)).

— 1
— Hoeffing’s inequality : Consider Z1,...,Z, IID over [0,1] and Z,, = — Z;. We
n
=1
have, for any ¢ > 0 B
P{Z, —E(Z)) > t} < exp(—2nt?)
— McDiarmid inequality : let A be a function of n variables z1,...,z, satisfying the
uniform bounded differences assumption with constant c, ..., c : for any index 1,
sup  |h(z1, .y xn) — A1, T, T i1 )| S (1)
I17"'7In7xé
Then, we have that : for any ¢ > 0,
2t2
P{h(X1,...,X,) —E(h(X1,...,X,)) >t} <exp ——3) (2)

— The empirical Rademacher complexity of G wrt to the sample 27 = {Z,...,Z,} is

defined as :
R,(G,2) <SUP Zezg ) (3)

geg M
where €1,...,&, are IID Rademacher random variables, and they also are inde-
pendent of Z7.

— The Rademacher complexity of G is defined as :
R.(G,Z) =E(R.(G. 2)) (4)
— Growth function (or shattering coefficient) of a class C of sets of R? of order n :

n) = ma K,nC : CecC 5
A= max ] ) )

— VC dimension of a class C of sets of R? :
V=max{neN : y(n)=2"} . (6)

— Sauer’s lemma : for all n >V, y(n) < (ne/V)V.
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Exercice 1 - Consider an IID sample of Rademacher random variables (P{e; = +1} =
P{e; = -1} =1/2).
1. Consider ) C R" a finite set of points. We assume that they are all contained in the
Fuclidean ball with center the origin and radius R. Using Jensen’s inequality with
the exponential function, show that : for any ¢ > 0

k
tR?> 1
E ( sup Zfifh‘) < 5 + OgJQ’

9=(q1,--,9n)€Q ;1

where |@)] is the number of points in Q.
2. Provide the optimal choice of ¢ in the previous question and give the expression of
the optimal bound.

3. Based on the previous inequality, provide a bound for the Rademacher average of
a class G of binary {—1, +1}-classifiers, first in terms of the growth function of the
class, then in terms of the VC dimension of the class.

4. In order to assess the learning complexity for the convex hull of a class G of classifiers,
which notion should be used ? Explain why.

Exercise 2 - In this exercise, we consider a binary classification problem with labels in
{—1,+1}, and the elements f are soft classifiers (real-valued functions over R?).

1. Set ¢(z) = logy (1 + exp(z)) and consider the convex cost function A(f) =E¢p(-Y -
f(X)). Define f* the optimal element wrt to the functional A and find an explicit
function H such that :

A(f*) = E(H(n(X)))
2. State some simple properties of H and find ¢ > 0 such that : for any ¢ € [0, 1], we

have )
1-—2¢
Ht)<1-—
(1) < < 2c )

3. We introduce : L(f) =P(Y - f(X) < 0) and L* its optimal value. Find « such that
the ratio (L(f) — L*)/(A(f) — A*)® is uniformly bounded over all f’s.

4. Consider A > 0 and G a family of {—1, +1}-classifiers with finite VC dimension V.
We introduce the following functional class :

N N
Fi= f:ijgj:NEN,ngQ,ijR,Z]wj|§/\
j=1 j=1

We set ﬁn to be the empirical version of A. Show that :

~ Vlog(en/V) log(1/0)
sup [An(f) = AU < clQ\f —— ——— + () — —

where ¢; and co will be found explicitly.

5. Consider fn » the minimizer of A\n over Fy. Provide an explicit upper bound on its

classification error L(fn ,\) — L* which will depend on V', n, and A, but also on the
approximation error wrt to the convex risk : inf e 7, A(f) — A*.
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Exercise 3 - In this exercise, we consider a binary classification problem with labels in
{—1,+1} over R? with IID training data (X1,Y1)...,(Xys,Y,). We define an n-vector of
convex weights 7(¢) over the sample points : for any i = 1,...,n, 7(¢) > 0and Y ;" 7(i) =
1. We introduce the following functionals :

— for any {—1, 1}-classifier g,

e(g) = Zﬂ(i)H{Yi L g(X;) = -1}

=1

— for any real-valued f,
N 1 &
Anlf) == ;exp (=Yi - f(X3)) -

1. Provide an expression of 7(7) such that : for any fixed f, minimizing

|, 04u(f +ag)
Oa

a=0
is equivalent to minimizing €(g).

2. We propose to build decision rules f of the form fr = ZtT:1 a¢gy where the ay’s are
real-valued coefficients and g;’s are simple classifiers taking their values in {—1,1}.

Propose an algorithm relying on an iterative principle to determine the updates of
(ot gt)-
3. Give the explicit expression of oy at every iteration of the algorithm. Hint : We may
OAn (fi—1+age)

consider the zero of the function o — e

4. Provide some practical choices in order to develop a numerical implementation of
this algorithm.

Exercise 4 - Let F be a class of real-valued functions and a fixed value of p > 0. We assume
(X,Y),(X1,Y1)...,(X,,Y,) are IID binary classification data with labels in {—1,+1}.
Consider the following error functions L(f) = P(Y- f(X) < 0) and En,p(f) =150 (Y5
f(X;)) where : for any p > 0,

() = (1= t/p){0 < t < p} +I{t < 0}

1. For any 6 > 0, show that with probability at least 1—4, the two following inequalities

hold :
sup(L(f) — En,p(f)) < gE(ﬁ”(}—)) T bgél/é)
feF P "
and
sup(L(f) — En,p(f)) < gﬁn(]:) +3 logf/&)
feF P "

2. From the previous question, derive generalization error guarantees for the Empirical
Risk Minimization (ERM) estimator f, = argmingcz» i I(Y; - f(X;) <0).
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