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Introduction to Statistical Learning

Final exam

Duration : 2h - Lecture notes not allowed

Reminder on some definitions and results

— IID means Independent and Identically Distributed.

— Jensen’s inequality : if ψ is a convex function, then we have ψ(E(U)) ≤ E
(
ψ(U)

)
.

— Hoeffing’s inequality : Consider Z1, . . . , Zn IID over [0, 1] and Zn =
1

n

n∑
i=1

Zi. We

have, for any t > 0
P{Zn − E(Z1) > t} ≤ exp(−2nt2)

— McDiarmid inequality : let h be a function of n variables x1, . . . , xn satisfying the
uniform bounded differences assumption with constant c, . . . , c : for any index i,

sup
x1,...,xn,x′

i

|h(x1, . . . , xn)− h(x1, . . . , xi−1, x
′
i, xi+1 . . . , xn)| ≤ c . (1)

Then, we have that : for any t > 0,

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≥ t} ≤ exp

(
− 2t2

nc2

)
. (2)

— The empirical Rademacher complexity of G wrt to the sample Zn
1 = {Z1, . . . , Zn} is

defined as :

R̂n(G, Z) = E

(
sup
g∈G

1

n

n∑
i=1

εig(Zi)

∣∣∣∣∣Zn
1

)
(3)

where ε1, . . . , εn are IID Rademacher random variables, and they also are inde-
pendent of Zn

1 .

— The Rademacher complexity of G is defined as :

Rn(G, Z) = E
(
R̂n(G, Z)

)
(4)

— Growth function (or shattering coefficient) of a class C of sets of Rd of order n :

γ(n) = max
Kn={x1,...,xn}⊂Rd

|{Kn ∩ C : C ∈ C}| (5)

— VC dimension of a class C of sets of Rd :

V = max {n ∈ N : γ(n) = 2n} . (6)

— Sauer’s lemma : for all n ≥ V , γ(n) ≤ (ne/V )V .
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Exercice 1 - Consider an IID sample of Rademacher random variables (P{ε1 = +1} =
P{ε1 = −1} = 1/2).

1. Consider Q ⊂ Rn a finite set of points. We assume that they are all contained in the
Euclidean ball with center the origin and radius R. Using Jensen’s inequality with
the exponential function, show that : for any t > 0

E

(
sup

q=(q1,...,qn)∈Q

k∑
i=1

εiqi

)
≤ tR2

2
+

log |Q|
t

where |Q| is the number of points in Q.

2. Provide the optimal choice of t in the previous question and give the expression of
the optimal bound.

3. Based on the previous inequality, provide a bound for the Rademacher average of
a class G of binary {−1,+1}-classifiers, first in terms of the growth function of the
class, then in terms of the VC dimension of the class.

4. In order to assess the learning complexity for the convex hull of a class G of classifiers,
which notion should be used ? Explain why.

Exercise 2 - In this exercise, we consider a binary classification problem with labels in
{−1,+1}, and the elements f are soft classifiers (real-valued functions over Rd).

1. Set φ(x) = log2
(
1 + exp(x)

)
and consider the convex cost function A(f) = Eφ(−Y ·

f(X)). Define f∗ the optimal element wrt to the functional A and find an explicit
function H such that :

A(f∗) = E(H(η(X)))

2. State some simple properties of H and find c > 0 such that : for any t ∈ [0, 1], we
have

H(t) ≤ 1−
(
1− 2t

2c

)2

3. We introduce : L(f) = P(Y · f(X) < 0) and L∗ its optimal value. Find α such that
the ratio (L(f)− L∗)/(A(f)−A∗)α is uniformly bounded over all f ’s.

4. Consider λ > 0 and G a family of {−1,+1}-classifiers with finite VC dimension V .
We introduce the following functional class :

Fλ =

f =
N∑
j=1

wjgj : N ∈ N, gj ∈ G, wj ∈ R,
N∑
j=1

|wj | ≤ λ


We set Ân to be the empirical version of A. Show that :

sup
f∈Fλ

|Ân(f)−A(f)| ≤ c1(λ)

√
V log(en/V )

n
+ c2(λ)

√
log(1/δ)

n

where c1 and c2 will be found explicitly.

5. Consider f̂n,λ the minimizer of Ân over Fλ. Provide an explicit upper bound on its

classification error L
(
f̂n,λ

)
− L∗ which will depend on V , n, and λ, but also on the

approximation error wrt to the convex risk : inff∈Fλ
A(f)−A∗.
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Exercise 3 - In this exercise, we consider a binary classification problem with labels in
{−1,+1} over Rd with IID training data (X1, Y1) . . . , (Xn, Yn). We define an n-vector of
convex weights π(i) over the sample points : for any i = 1, . . . , n, π(i) ≥ 0 and

∑n
i=1 π(i) =

1. We introduce the following functionals :

— for any {−1, 1}-classifier g,

ϵ(g) =

n∑
i=1

π(i)I{Yi · g(Xi) = −1}

— for any real-valued f ,

Ân(f) =
1

n

n∑
i=1

exp (−Yi · f(Xi)) .

1. Provide an expression of π(i) such that : for any fixed f , minimizing

g 7→ ∂An(f + αg)

∂α

∣∣∣∣
α=0

is equivalent to minimizing ϵ(g).

2. We propose to build decision rules f of the form fT =
∑T

t=1 αtgt where the αt’s are
real-valued coefficients and gt’s are simple classifiers taking their values in {−1, 1}.
Propose an algorithm relying on an iterative principle to determine the updates of
(αt, gt).

3. Give the explicit expression of αt at every iteration of the algorithm. Hint : We may
consider the zero of the function α 7→ ∂An(ft−1+αgt)

∂α .

4. Provide some practical choices in order to develop a numerical implementation of
this algorithm.

Exercise 4 - Let F be a class of real-valued functions and a fixed value of ρ > 0. We assume
(X,Y ), (X1, Y1) . . . , (Xn, Yn) are IID binary classification data with labels in {−1,+1}.
Consider the following error functions L(f) = P(Y ·f(X) < 0) and L̂n,ρ(f) =

1
n

∑n
i=1 ψρ(Yi·

f(Xi)) where : for any ρ > 0,

ψρ(t) = (1− t/ρ)I{0 ≤ t ≤ ρ}+ I{t ≤ 0}

1. For any δ > 0, show that with probability at least 1−δ, the two following inequalities
hold :

sup
f∈F

(L(f)− L̂n,ρ(f)) ≤
2

ρ
E(R̂n(F)) +

√
log(1/δ)

2n

and

sup
f∈F

(L(f)− L̂n,ρ(f)) ≤
2

ρ
R̂n(F) + 3

√
log(2/δ)

2n

2. From the previous question, derive generalization error guarantees for the Empirical
Risk Minimization (ERM) estimator f̂n = argminf∈F

∑n
i=1 I(Yi · f(Xi) < 0).
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