Introduction to Statistical Learning

Mid-term exam

Duration: 2h - Lecture notes not allowed

Reminder on main definitions and results

- Union bound : $\mathbb{P}\{A \cup B\} \leq \mathbb{P}\{A\} + \mathbb{P}\{B\}$ where A and B are events.
- IID means Independent and Identically Distributed.
- Law of iterated expectation : $\mathbb{E}(U) = \mathbb{E}(\mathbb{E}(U \mid V))$ where U, V are random variables.
- Subadditivity of supremum operator : $\sup(f+g) \leq \sup(f) + \sup(g)$ and $\sup(f) \sup(g) \leq \sup(f-g)$.

Exercise 1

1. Consider Q a real-valued random variable such that : $\mathbb{E}(Q) = 0$ and $\mathbb{P}(Q \in [a, b]) = 1$. Prove the following upper bound : for any s > 0,

$$\mathbb{E}\left(e^{sQ}\right) \le \exp\left(\frac{s^2(b-a)^2}{8}\right)$$

- 2. Consider $V = (V_1, \ldots, V_n, \ldots)$ and $Z = (Z_1, \ldots, Z_n, \ldots)$ two sequences of real-valued random variables. We assume the following: for any $n \ge 1$,
 - $V_n = \psi(Z_1, \ldots, Z_n)$ for some mesurable function ψ
 - $\mathbb{E}(V_{n+1} \mid Z_1, \dots, Z_n) = 0$
 - there exists a sequence T_n which is a measurable function of (Z_1, \ldots, Z_{n-1}) and $c \geq 0$ such that : for any $n, T_n \leq V_n \leq T_n + c$

Find the expression of $\kappa(t, n, c)$ such that, for any t > 0

$$\mathbb{P}\left(\sum_{i=1}^{n} V_i > t\right) \le \kappa(t, n, c), \text{ and } \mathbb{P}\left(\sum_{i=1}^{n} V_i < -t\right) \le \kappa(t, n, c).$$

3. Consider a real-valued and measurable function h of n variables such that there exist c > 0 such that : for any $i \in \{1, ..., n\}$

$$\sup_{z_1,\dots,z_n,z_i'} |h(z_1,\dots,z_n) - h(z_1,\dots,z_{i-1},z_i',z_{i+1},\dots,z_n)| \le c$$

Assume that Z_1, \ldots, Z_n are IID random variables. Prove that, for any t > 0

$$\mathbb{P}\left(h(Z_1,\ldots,Z_n)-\mathbb{E}\big(h(Z_1,\ldots,Z_n)\big)>t\right)\leq \kappa(t,n,c)$$

and

$$\mathbb{P}\left(h(Z_1,\ldots,Z_n)-\mathbb{E}(h(Z_1,\ldots,Z_n))<-t\right)\leq \kappa(t,n,c)$$

where $\kappa(t, n, c)$ is as before.

Exercise 2 - Let \mathcal{F} a class of functions from \mathbb{R}^d to [-B, B], with B > 0. Consider random sign variables $\varepsilon_1, \ldots, \varepsilon_n$ IID such that $\mathbb{P}(\varepsilon_1 = -1) = \mathbb{P}(\varepsilon_1 = +1) = 1/2$. Consider the *empirical Rademacher complexity* defined as

$$\widehat{R}_n(\mathcal{F}) = \frac{1}{n} \mathbb{E} \left(\sup_{f \in \mathcal{F}} \sum_{i=1}^n \varepsilon_i f(X_i) \middle| X_1, \dots, X_n \right)$$

and the average Rademacher complexity as:

$$\bar{R}_n(\mathcal{F}) = \frac{1}{n} \mathbb{E} \left(\sup_{f \in \mathcal{F}} \sum_{i=1}^n \varepsilon_i f(X_i) \right)$$

- 1. Show that for a given class \mathcal{F} of functions, the empirical Rademacher complexity seen as a function of X_1, \ldots, X_n satisfies the bounded differences condition.
- 2. Provide an upper bound on the average Rademacher complexity in terms of the empirical Rademacher complexity that holds with high probability.

Exercise 3 - Consider the binary classification model where the random pair (X, Y) has distribution P over $\mathbb{R}_+ \times \{0, 1\}$ and :

- the marginal distribution of X over \mathbb{R}_+ is denoted P_X
- the conditional distribution of Y given X = x is a Bernoulli distribution with parameter $\eta(x) = \frac{\theta}{x + \theta}$, for any $x \in \mathbb{R}_+$, and for fixed $\theta > 0$.
- 1. Assume that the marginal distribution follows a uniform distribution $P_X = \mathcal{U}([0, \alpha\theta])$ over \mathbb{R}_+ with $\alpha > 1$.
 - (a) Find the minimizing argument g^* of $L(g) = \mathbb{P}(Y \neq g(X))$ over all measurable classifiers $g : \mathbb{R}_+ \to \{0,1\}$.
 - (b) Compute $L^* = L(g^*)$ in the case where the marginal distribution $P_X = \mathcal{U}([0, \alpha\theta])$ with $\alpha > 1$.
- 2. Now assume we have the following IID data $(X_1, Y_1), \ldots, (X_n, Y_n)$ available.
 - (a) Assuming P_X as before (with α fixed), propose an empirical estimate $\widehat{\theta}$ of θ based only on X_1, \ldots, X_n .
 - (b) For general P_X over \mathbb{R}_+ (unspecified, not necessarily uniformly distributed, and not depending on θ), what is a possible empirical estimate $\widehat{\theta}$ for θ ?
 - (c) Denote by $\widehat{\eta}$ the plugin estimate of η based on $\widehat{\theta}$, what is the plugin classifier \widehat{g} based on $\widehat{\eta}$? Find a bound on $L(\widehat{g}) L^*$ depending on the quantity $\mathbb{E}(|\widehat{\eta}(X) \eta(X)|)$.

Exercice 4 - Find the optimal elements h^* and $\mathcal{L}^* = \mathcal{L}(h^*)$ in the following cases of error measures with binary classification data (request : all notations should be made explicit in your solutions) :

- 1. $\mathcal{L}(h) = \mathbb{P}(h(X) \neq Y)$.
- 2. $\mathcal{L}(h) = \mathbb{P}(h(X) \neq Y)$ with the constraint $\mathbb{P}(h(X) = 1) = u$ with $u \in (0,1)$.
- 3. $\mathcal{L}(h) = \mathbb{E}(\exp(-Y \cdot h(X)))$.