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Reminder/Notations
– Law of iterated expectation : E(U) = E(E(U | V )) where U , V are random variables.
– McDiarmid inequality : let h be a function of n variables x1, . . . , xn satisfying the

uniform bounded differences assumption with constant c, . . . , c : for any index i,

sup
x1,...,xn,x′

i

|h(x1, . . . , xn)− h(x1, . . . , xi−1, x
′
i, xi+1 . . . , xn)| ≤ c . (1)

Then, we have that : for any t > 0,

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≥ t} ≤ exp

(
− 2t2

nc2

)
. (2)

and

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≤ −t} ≤ exp

(
− 2t2

nc2

)
. (3)

– The empirical Rademacher complexity of G wrt to the sample Zn
1 = {Z1, . . . , Zn} is

defined as :

R̂n(G, Z) = E

(
sup
g∈G

1

n

n∑
i=1

εig(Zi)

∣∣∣∣∣Zn
1

)
(4)

where ε1, . . . , εn are IID Rademacher random variables, and they also are inde-
pendent of Zn

1 .

– The Rademacher complexity of G is defined as :

Rn(G, Z) = E
(
R̂n(G, Z)

)
(5)

– Growth function of a class C of sets of Rd of order n :

γ(C, n) = max
Kn={x1,...,xn}⊂Rd

|{Kn ∩ C : C ∈ C}| (6)

– VC dimension of a class C of sets of Rd :

V (C) = max {n ∈ N : γ(C, n) = 2n} . (7)
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Exercise 1 - Consider the model for classification data where X is a random vector on
Rd and Y is a random variable taking values in {−1,+1}.
Denote by η(x) = P{Y = +1 | X = x} the posterior probability. Find the optimal classifier
under the two following risk scenarios :

1. Consider the classification error L(g) = P{Y 6= g(X)} for g : Rd → {−1,+1}.
According to the value of the quantity E(Y | X = x) at x ∈ Rd, what would be the
optimal decision with respect to L ?

2. Fix u ∈ (0, 1). Now assume that we aim at minimizing L(g) under the budget
constraint u = P(g(X) = +1). Set q

.
= q(u) such that u = P(η(X) > q) and

express L(g) as the expectation over X of a quantity depending on η(X), u, and
q. Then deduce what is the optimal classifier with respect to L under the budget
constraint.

Exercise 2 - Let G be a class of {0, 1}-valued functions over Rd. Let (X1, Y1), . . . , (Xn, Yn)
an IID sample of classification data in Rd × {0, 1}. Set δ > 0.

1. Show that, with probability at least 1− δ :

Rn(G, X) ≤ R̂n(G, X) +

√
log(1/δ)

2n

2. Set F = {(x, y) 7→ I{y 6= g(x)} : g ∈ G} and relate Rn

(
F , (X,Y )

)
to Rn(G, X).

3. Consider the binary classification problem. Given a class G of candidate classifiers,
what is the strategy that selects a classifier out of G and for which performance
can be explained by a control of the Rademacher average ? Provide a mathematical
argument for performance prediction of the learning strategy.

Exercise 3 - Consider the two following types of sets of Rd, with d ≥ 1 :
– C(θ, b) = {x ∈ Rd : θTx ≤ b}
– S(j, a, b) = {x = (x(1), . . . , x(d)) ∈ Rd : ax(j) ≤ b}

where θ ∈ Rd, b ∈ R, a ∈ {−1,+1} and j ∈ {1, . . . , d}.

We define the two collections :
– Γ1 = {C(θ, b) : θ ∈ Rd, b ∈ R}
– Γ2 = {S(j, a, b) : a ∈ {−1,+1}, j ∈ {1, . . . , d}, b ∈ R}

We propose to show that V (Γ2) < V (Γ1) when d ≥ d0, for some d0 :

1. Describe what happens in the case d = 1. What does it imply for d0 ?

2. Prove a tight lower bound on V (Γ1).

3. Given a set Kn of n points {x1, . . . , xn} in Rd, what is the maximal number of subsets
of Kn obtained as Kn ∩ S, where S ∈ Γ2.

4. Give an upper bound for V (Γ2) and conclude.
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