Introduction to Statistical Learning

Mid-term exam

Duration : 1h30 - No documents allowed

Reminder/Notations

- Law of iterated expectation : $\mathbb{E}(U) = \mathbb{E}(\mathbb{E}(U \mid V))$ where U, V are random variables.
- McDiarmid inequality : let h be a function of n variables x_1, \ldots, x_n satisfying the uniform bounded differences assumption with constant c, \ldots, c : for any index i,

$$\sup_{x_1,\dots,x_n,x'_i} |h(x_1,\dots,x_n) - h(x_1,\dots,x_{i-1},x'_i,x_{i+1}\dots,x_n)| \le c .$$
(1)

Then, we have that : for any t > 0,

$$\mathbb{P}\{h(X_1,\ldots,X_n) - \mathbb{E}(h(X_1,\ldots,X_n)) \ge t\} \le \exp\left(-\frac{2t^2}{nc^2}\right) .$$
(2)

and

$$\mathbb{P}\{h(X_1,\ldots,X_n) - \mathbb{E}(h(X_1,\ldots,X_n)) \le -t\} \le \exp\left(-\frac{2t^2}{nc^2}\right) .$$
(3)

- The empirical Rademacher complexity of \mathcal{G} wrt to the sample $Z_1^n = \{Z_1, \ldots, Z_n\}$ is defined as :

$$\widehat{R}_n(\mathcal{G}, Z) = \mathbb{E}\left(\sup_{g \in \mathcal{G}} \left. \frac{1}{n} \sum_{i=1}^n \varepsilon_i g(Z_i) \right| Z_1^n \right)$$
(4)

where $\varepsilon_1, \ldots, \varepsilon_n$ are *IID* Rademacher random variables, and they also are independent of Z_1^n .

– The Rademacher complexity of \mathcal{G} is defined as :

$$R_n(\mathcal{G}, Z) = \mathbb{E}\big(\widehat{R}_n(\mathcal{G}, Z)\big) \tag{5}$$

– Growth function of a class \mathcal{C} of sets of \mathbb{R}^d of order n:

$$\gamma(\mathcal{C}, n) = \max_{K_n = \{x_1, \dots, x_n\} \subset \mathbb{R}^d} |\{K_n \cap C : C \in \mathcal{C}\}|$$
(6)

– VC dimension of a class \mathcal{C} of sets of \mathbb{R}^d :

$$V(\mathcal{C}) = \max\left\{n \in \mathbb{N} : \gamma(\mathcal{C}, n) = 2^n\right\}.$$
(7)

Exercise 1 - Consider the model for classification data where X is a random vector on \mathbb{R}^d and Y is a random variable taking values in $\{-1, +1\}$.

Denote by $\eta(x) = \mathbb{P}\{Y = +1 \mid X = x\}$ the posterior probability. Find the optimal classifier under the two following risk scenarios :

- 1. Consider the classification error $L(g) = \mathbb{P}\{Y \neq g(X)\}$ for $g : \mathbb{R}^d \to \{-1, +1\}$. According to the value of the quantity $\mathbb{E}(Y \mid X = x)$ at $x \in \mathbb{R}^d$, what would be the optimal decision with respect to L?
- 2. Fix $u \in (0,1)$. Now assume that we aim at minimizing L(g) under the budget constraint $u = \mathbb{P}(q(X) = +1)$. Set $q \doteq q(u)$ such that $u = \mathbb{P}(q(X) > q)$ and express L(q) as the expectation over X of a quantity depending on $\eta(X)$, u, and q. Then deduce what is the optimal classifier with respect to L under the budget constraint.

Exercise 2 - Let \mathcal{G} be a class of $\{0, 1\}$ -valued functions over \mathbb{R}^d . Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ an IID sample of classification data in $\mathbb{R}^d \times \{0, 1\}$. Set $\delta > 0$.

1. Show that, with probability at least $1 - \delta$:

$$R_n(\mathcal{G}, X) \le \widehat{R}_n(\mathcal{G}, X) + \sqrt{\frac{\log(1/\delta)}{2n}}$$

- 2. Set $\mathcal{F} = \{(x, y) \mapsto \mathbb{I}\{y \neq g(x)\} : g \in \mathcal{G}\}$ and relate $R_n(\mathcal{F}, (X, Y))$ to $R_n(\mathcal{G}, X)$.
- 3. Consider the binary classification problem. Given a class \mathcal{G} of candidate classifiers, what is the strategy that selects a classifier out of \mathcal{G} and for which performance can be explained by a control of the Rademacher average? Provide a mathematical argument for performance prediction of the learning strategy.

Exercise 3 - Consider the two following types of sets of \mathbb{R}^d , with d > 1:

 $- C(\theta, b) = \{ x \in \mathbb{R}^d : \theta^T x \le b \}$ - $S(j, a, b) = \{ x = (x^{(1)}, \dots, x^{(d)}) \in \mathbb{R}^d : ax^{(j)} \le b \}$ where $\theta \in \mathbb{R}^d$, $b \in \mathbb{R}$, $a \in \{-1, +1\}$ and $j \in \{1, \dots, d\}$.

We define the two collections :

$$-\Gamma_1 = \{ C(\theta, b) : \theta \in \mathbb{R}^d, b \in \mathbb{R} \}$$

 $-\Gamma_2 = \{S(j, a, b) : a \in \{-1, +1\}, j \in \{1, \dots, d\}, b \in \mathbb{R}\}$

We propose to show that $V(\Gamma_2) < V(\Gamma_1)$ when $d \ge d_0$, for some d_0 :

- 1. Describe what happens in the case d = 1. What does it imply for d_0 ?
- 2. Prove a tight lower bound on $V(\Gamma_1)$.
- 3. Given a set K_n of n points $\{x_1, \ldots, x_n\}$ in \mathbb{R}^d , what is the maximal number of subsets of K_n obtained as $K_n \cap S$, where $S \in \Gamma_2$.
- 4. Give an upper bound for $V(\Gamma_2)$ and conclude.