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Introduction to Statistical Learning

Exercise sheet n◦4

Exercise 1 - Rademacher complexity and multiclass classification

A. We recall that given X1, . . . , Xn random vectors on Rd and F being a class of
bounded real-valued functions, the empirical Rademacher average is defined as the
random quantity :

R̂n(F) =
1

n
E

(
sup
f∈F

n∑
i=1

εif(Xi)

∣∣∣∣∣X1, . . . , Xn

)

where ε1, . . . , εn are IID random sign variables such that P{ε1 = −1} = P{ε1 =
+1} = 1/2. We also admit the following result : let Ψ : R → R be a Lipschitz
function (i.e. ∃L : ∀u, v ∈ R, |Ψ(u)−Ψ(v)| ≤ L|u− v|), then we have :

R̂n(Ψ ◦ F) ≤ LR̂n(F)

(a) What is the Lipschitz constant L for the function u 7→ |u| ?
(b) Consider two classes of bounded real-valued functions F1, F2. Find a simple

upper bound of the following quantity :

1

n
E

(
sup

f1∈F1,f2∈F2

n∑
i=1

εi|f1(Xi)− f2(Xi)|

∣∣∣∣∣X1, . . . , Xn

)

depending on R̂n(F1), R̂n(F2).

(c) Express max{f1, f2} as a linear relation involving |f1 − f2|.
(d) Consider the class F = {max{f1, f2} : f1 ∈ F1, f2 ∈ F2} and provide a simple

upper bound of R̂n(F) depending on R̂n(F1), R̂n(F2).

B. Consider a multiclass classification problem with observations (X1, Y1), . . . , (Xn, Yn)
IID copies of the random pair (X,Y ) where the output variable Y takes values in
{1, . . . ,K}. The decision rules are functions gh of the form :

gh : x 7→ arg max
y∈{1,...,K}

h(x, y)

where h is a real-valued function in a class H of functions over the set Rd ×
{1, . . . ,K}. The complexity of learning in the multiclass classification setup re-
lies on the complexity of the class H that will be considered here under the margin
approach. We thus define the margin ρh of function h as :

(x, y) 7→ ρh(x, y) = h(x, y)−max
y′ 6=y

h(x, y′) ,

and ρh belongs to the class Hρ of functions induced by H.
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(a) Set the empirical Rademacher complexity of the class Hρ to be :

R̂n(Hρ) ≤
1

n
E

(
sup
h∈H

n∑
i=1

εiρh(Xi, Yi)

∣∣∣∣∣ (X1, Y1), . . . , (Xn, Yn)

)
.

Note that, for any Λ, we have that :

Λ(Xi, Yi) =
K∑
y=1

Λ(Xi, y)I{y = Yi} =
K∑
y=1

Λ(y)

(
2I{y = Yi} − 1

2
+

1

2

)
,

and show that :

R̂n(Hρ) ≤
1

n

K∑
y=1

E

(
sup
h∈H

n∑
i=1

εiρh(Xi, y)

∣∣∣∣∣X1, . . . , Xn

)

(b) Set HX = {x 7→ h(x, y) : y ∈ {1, . . . ,K}, h ∈ H}. Using the definition of ρh
and the main result of Part A, prove that :

R̂n(Hρ) ≤ KαR̂n(HX)

where α will be made explicit.

(c) Set ϕγ(u) = (1 − u/γ)I{u ∈ (0, γ]} + I{u ≥ 0} and compute its Lipschitz
constant.

(d) Relate the multiclass classification error L(gh) = P{Y 6= gh(X)} to the multi-
class margin error Lγ(h) = E{ϕγ

(
ρh(x, y)

)
}.

(e) We introduce L̂γ(h) = 1
n

∑n
i=1 ϕγ(ρh(Xi, Yi)). Use a concentration inequality to

derive an upper bound on the quantity :

sup
h∈H

(Lγ(h)− L̂γ(h)) .

(f) Give a sketch of proof that the following inequality holds, with probability at
least 1− δ, for any h ∈ H :

L(gh) ≤ L̂γ(h) + c1(K, γ)E(R̂n(HX)) + c2(n, δ)

where c1 and c2 will have to be computed explicitly.
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Exercise 2 - Mirror descent algorithm for Online Convex Risk Minimiza-
tion

A. We consider E a metric space with norm ‖ · ‖ and D an open and convex set in E.
We first introduce some definitions :
— [Strong convexity] Fix α > 0. A convex function V : D → R is said to be

α-strongly convex with respect to norm ‖ · ‖ if :

V (sx+ (1− s)y) ≤ sV (x) + (1− s)V (y)− α

2
s(1− s)‖x− y‖2

for all x, y ∈ D and any s ∈ [0, 1].

We assume in the sequel of the exercise that V : D → R is differentiable and
α-strongly convex with respect to norm ‖ · ‖.

— [Bregman divergence] The Bregman divergence of V is defined as :

BV (y, x) = V (y)− V (x)−∇V (x)T (y − x)

— [Bregman projection] For any x ∈ D and any closed convex set C in D, we
define the Bregman projection as :

ΠC,V (x) = arg min
z∈C∩D

BV (z, x)

(a) Prove that, for any x, y, z ∈ D, we have :(
∇V (x)−∇V (y)

)T
(x− z) = BV (x, y) + BV (z, x)− BV (z, y)

(b) Take z ∈ C ∩ D and prove that, for any y ∈ D, we have :(
∇V (ΠC,V (y))−∇V (y)

)T
(ΠC,V (y)− z) ≤ 0

(c) Show that, for any z ∈ C ∩ D and any y ∈ D, we have :

BV (z,ΠC,V (y)) ≤ BV (z, y)

B. We consider the problem of the minimization of a convex function f which is as-
sumed to be Lipschitz wrt ‖ · ‖ with Lipschitz constant equal to L. We denote by
‖ · ‖∗ the dual norm of ‖ · ‖ in the sense of convex conjugates. We introduce the
following algorithm, known as the mirror descent algorithm, for given sets C, D,
and potential function V :

Algorithm 1 Mirror descent algorithm

Require: η > 0, x1 ∈ C ∩ D and ζ : (E, ‖ · ‖)→ (E, ‖ · ‖∗) with ζ(x) = ∇V (x).
for t = 1, . . . , T do

ζ(yt+1) = ζ(xt)− ηgt with gt ∈ ∂f(xt)
xt+1 = ΠC,V (yt+1)

end for

return either xT =
1

T

T∑
t=1

xt or x◦ ∈ arg min
x∈{x1,...,xT }

f(x)
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(a) Show that :

BV (xt, yt+1) ≤
η2L2

2α

We will make use of Hölder’s inequality : gTx ≤ ‖g‖∗ · ‖x‖.
(b) Show that : for any x ∈ C ∩ D, we have :

1

T

T∑
t=1

(
f(xt)− f(x)

)
≤ ηL2

2α
+
BV (x, x1)

ηT

(c) For x1 = arg min
z∈C∩D

V (x) and any x ∈ C ∩ D, show that :

BV (x, x1) ≤ sup
C∩D

V − inf
C∩D

V = R2

(d) Find an upper bound for the rate of convergence of the mirror descent algorithm
(for both estimates xT and x◦) to the minimum x∗ of f , expressed in terms of
R, L, α, and T .

C. Describe explicitly the Mirror Descent Algorithm in the following cases :

(a) [Euclidean case] D = Rd and V (x) =
1

2
‖x‖2.

(b) [`1 case] D = Rd+ − 0, C = {x ∈ Rd+ : ‖x‖1 = 1} (simplex), and V (x) =∑d
i=1 x

(i) log
(
x(i)
)

(c) Apply the latter result to a finite convex combination of weak classifiers to
minimize the convex risk in classification.
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