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Introduction to Statistical Learning
Exercise sheet n°4

Exercise 1 - Rademacher complexity and multiclass classification

A. We recall that given X1,...,X, random vectors on R? and F being a class of
bounded real-valued functions, the empirical Rademacher average is defined as the

random quantity :
Xq,... ,Xn>

where €1, ...,e, are IID random sign variables such that P{e; = —1} = P{e; =
+1} = 1/2. We also admit the following result : let ¥ : R — R be a Lipschitz
function (i.e. 3L : Yu,v € R, |¥(u) — ¥(v)| < L|u — vl|), then we have :

R.(F) = lE (sup Zai (Xi)

o\ferio

R, (Vo F) < LR, (F)

(a) What is the Lipschitz constant L for the function u — |u|?

(b) Consider two classes of bounded real-valued functions Fi, F2. Find a simple
upper bound of the following quantity :
Xi,... ,Xn>
depending on En(]ﬁ), En(]:g).
(c) Express max{fi, fo} as a linear relation involving |f1 — fa.

(d) Consider the class F = {max{fi, fo} : fi € F1, fo € F2} and provide a simple
upper bound of R, (F) depending on R, (F1), Ry (F2).

lIE ( sup Z€i|f1(Xi)—f2(Xi)|

n fieF1.faeFa 4

B. Consider a multiclass classification problem with observations (X1, Y1), ..., (X, Yy)
IID copies of the random pair (X,Y’) where the output variable Y takes values in
{1,..., K}. The decision rules are functions g, of the form :

gn : x+— argmax h(zx,y)

where h is a real-valued function in a class H of functions over the set R% x
{1,...,K}. The complexity of learning in the multiclass classification setup re-
lies on the complexity of the class ‘H that will be considered here under the margin
approach. We thus define the margin p; of function h as :

(z,y) = pul(z,y) = h(z,y) — I;}%h(x, Yy,

and py, belongs to the class H, of functions induced by H.
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(a)

Set the empirical Rademacher complexity of the class H, to be :

—~ 1 n
Rn(Hp) < —E [ sup Y eipn(Xi, Vi)
n heH ;1

(Xl,Yl),...,(Xn,Yn)> .

Note that, for any A, we have that :

2 2

Xl,...,Xn)

Set Hx = {x — h(z,y) : y€{l,...,K}, h € H}. Using the definition of py,
and the main result of Part A, prove that :

K K
My=Y} -1 1
ALY = Ay = ¥) = oA (P
y=1 y=1
and show that :

K n
~ 1
Ru(Hp) < D E (Sup > eion(Xi,y)

y=1 \"eH -

Rn(H,) < K“R,(Hx)

where o will be made explicit.

Set py(u) = (1 —u/v)l{u € (0,7]} + I{u > 0} and compute its Lipschitz
constant.

Relate the multiclass classification error L(gp) = P{Y # gn(X)} to the multi-
class margin error L+ (h) = E{py(pn(z,y))}-

We introduce Ey(h) =15  ©y(pn(Xi,Yi)). Use a concentration inequality to

n Lai
derive an upper bound on the quantity :

sup(L(h) — Ev(h)) .
heH

Give a sketch of proof that the following inequality holds, with probability at
least 1 — 6, for any h € H :

L(gn) < Ly(h) + 1 (K, 7)E(Rn(Hx)) + c2(n, 5)

where ¢; and ¢y will have to be computed explicitly.
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Exercise 2 - Mirror descent algorithm for Online Convex Risk Minimiza-
tion

A. We consider E a metric space with norm || - || and D an open and convex set in E.
We first introduce some definitions :
— [Strong convexity] Fix @ > 0. A convex function V' : D — R is said to be
a-strongly convex with respect to norm || - || if :

Visz+ (1 -s)y) <sV(z)+(1-s)V(y) - %8(1 = s)llz —y?

for all z,y € D and any s € [0, 1].

We assume in the sequel of the exercise that V' : D — R is differentiable and
a-strongly convex with respect to norm || - ||.

— [Bregman divergence| The Bregman divergence of V' is defined as :
By (y,x) = V(y) = V(z) = VV(2)" (y — 2)

— [Bregman projection] For any x € D and any closed convex set C in D, we
define the Bregman projection as :

Il¢ v (z) = argmin By (z, )
zeCND

(a) Prove that, for any x,y, 2z € D, we have :
(VV(2) = VV(y)" (x = 2) = By(a,y) + Bv(z,2) — By (,9)
(b) Take z € CND and prove that, for any y € D, we have :

(VV (e (y) = VV(9)" (e (y) = 2) <0
(c) Show that, for any z € CN'D and any y € D, we have :
By (z,1lc,v(y)) < Bv(z,y)

B. We consider the problem of the minimization of a convex function f which is as-
sumed to be Lipschitz wrt || - || with Lipschitz constant equal to L. We denote by
| - ||« the dual norm of || - || in the sense of convex conjugates. We introduce the
following algorithm, known as the mirror descent algorithm, for given sets C, D,
and potential function V :

Algorithm 1 Mirror descent algorithm
Require: n>0,z1 €eCNDand ¢ : (E,|-|)— (E,|-|+) with {(z) = VV(z).
fort=1,...,T do
C(ye+1) = ((z¢) — nge with g¢ € Of (z4)

zip1 = He v (yis1)
end for

T
1
return either 77 = — Z x¢ or z° € argmin f(z)
T
t=1 ze{z1,....x7}
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(a) Show that :
7]2_[/2
2a
We will make use of Holder’s inequality : g7x < ||g|l« - ||=]|-

(b) Show that : for any x € C N'D, we have :

By (xt, yi+1) <

%Z(f(:rt) — f(2)) < 7725 n ngvj:xl)

(c) For x; = argmin V' (z) and any = € C N D, show that :
zeCND

< — inf V = R?
Bv(x,xl)_gggv clng R

(d) Find an upper bound for the rate of convergence of the mirror descent algorithm
(for both estimates T and x°) to the minimum z* of f, expressed in terms of
R, L, a,and T.

C. Describe explicitly the Mirror Descent Algorithm in the following cases :
1
(a) [Euclidean case] D = R? and V (z) = §Hx\|2
(b) [t casg] D = R‘fr —0,C={z € RL : |z[; = 1} (simplex), and V(z) =
Zgzl 20 log(az(z))

(c) Apply the latter result to a finite convex combination of weak classifiers to
minimize the convex risk in classification.
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