Introduction to Statistical Learning

Exercise sheet n°1

Exercise 1 - Consider the binary classification model where the random pair (X, Y) has distribution P over $\mathbb{R} \times \{0, 1\}$ and :

$$\mathcal{L}(X \mid Y = 0) = \mathcal{U}([0, \theta])$$

$$\mathcal{L}(X \mid Y = 1) = \mathcal{U}([0, 1])$$

$$p = \mathbb{P}(Y = 1)$$

with $p, \theta \in (0, 1)$ fixed. Compute the posterior probability $\eta(x) = \mathbb{P}(Y = 1 \mid X = x)$, for any $x \in \mathbb{R}$, as a function of p, θ . What if $\theta = 1/2$?

Exercise 2 - Consider the binary classification model where the random pair (X, Y) has distribution P over $\mathbb{R}_+ \times \{0, 1\}$ and :

- the marginal distribution of X over \mathbb{R}_+ is denoted P_X
- the conditional distribution of Y given X=x is a Bernoulli distribution with parameter $\eta(x)=\frac{x}{x+\theta}$, for any $x\in\mathbb{R}_+$, and for fixed $\theta>0$.

Find the Bayes classifier for this model (i.e. the minimizer of $L(g) = \mathbb{P}(Y \neq g(X))$ over all measurable classifiers $g: \mathbb{R}_+ \to \{0,1\}$. Give the expression of the Bayes error $L^* = L(g^*)$ in the case where $P_X = \mathcal{U}([0,\alpha\theta])$ with $\alpha > 1$. What is the value of α that maximizes L^* ?

Exercise 3 - Let $X=(T,U,V)^T$ où T,U,V IID real-valued random variables with exponential distribution $\mathcal{E}(1)$. Define $Y=\mathbb{I}\{T+U+V<\theta\}$ with fixed $\theta>0$.

- 1. Find the Bayes classifier $g^*(T, U)$ when V is not observed. Give the expression of the classification error of g^* (also called Bayes error). Compute it for $\theta = 9$.
- 2. Now assume that only T is observed, and address the same questions as above.
- 3. Propose a classifier for X when none of T, U, V are observed. What is its classification error?

ENS Paris-Saclay ______ Master 2 MVA

Exercise 4 - Consider (X,Y) a random pair that models classification data with labels in $\{0,1\}$. Define the following classification error

$$L_{\omega}(g) = \mathbb{E}(2\omega(Y) \cdot \mathbb{I}\{Y \neq g(X)\})$$

where $\omega(0) + \omega(1) = 1$.

- 1. Find the optimal elements (minimizer, error) for this risk.
- 2. Justify the interest of such an L_{ω} in practice?
- 3. Now consider the unit square in \mathbb{R}^2 .
 - (a) Plot the curves defined by $g \mapsto (\mathbb{P}\{g(X) = 1 \mid Y = 0\}, \mathbb{P}\{g(X) = 1 \mid Y = 1\})$ when g varies such that $L_{\omega}(g) = C$ with C fixed, for different values of C.
 - (b) Same question but assuming now that $\mathbb{P}\{g(X)=1\}=C$ with C fixed.

Exercise 5 - Consider (X,Y) a random pair that models classification data with labels in $\{0,1\}$. We fix c>0 and we consider classifiers with reject option $g: \mathbb{R}^d \to \{R,0,1\}$, that are evaluated with the following risk functional:

$$L_R(g) = \mathbb{P}\{Y \neq g(X), g(X) \neq R\} + c\mathbb{P}\{g(X) = R\}$$
.

What is the minimizing argument of $L_R(g)$ over all possible classifiers g with reject option? Give a practical interpretation of the result.

Exercise 6 - We consider the model for classification data where X is a random vector on \mathbb{R}^d and Y is a random variable taking values in $\{-1,+1\}$. We denote $\eta(x)=\mathbb{P}\{Y=+1\mid X=x\}$ the posterior probability. We consider the following problems for which the question is to compute the optimal decision rule g^* or f^* - please also provide the main proof arguments.

- 1. Criterion to minimize: $R(g) = \mathbb{E}((Y g(X))^2)$ where $g : \mathbb{R}^d \to \{-1, +1\}$
- 2. Criterion to minimize: $R(f) = \mathbb{E}((Y f(X))^2)$ where $f : \mathbb{R}^d \to \mathbb{R}$
- 3. Criterion to minimize : $A(f) = \mathbb{E}(\log(1 + e^{-Yf(X)}))$ where $f : \mathbb{R}^d \to \mathbb{R} \cup \{-\infty, +\infty\}$.

Explain why such criteria are relevant for the binary classification problem.