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Introduction to Statistical Learning

Exercise sheet n◦1

Exercise 1 - Consider the binary classification model where the random pair (X,Y ) has
distribution P over R× {0, 1} and :

L(X | Y = 0) = U([0, θ])

L(X | Y = 1) = U([0, 1])

p = P(Y = 1)

with p, θ ∈ (0, 1) fixed. Compute the posterior probability η(x) = P(Y = 1 | X = x), for
any x ∈ R, as a function of p, θ. What if θ = 1/2 ?

Exercise 2 - Consider the binary classification model where the random pair (X,Y ) has
distribution P over R+ × {0, 1} and :

— the marginal distribution of X over R+ is denoted PX

— the conditional distribution of Y given X = x is a Bernoulli distribution with

parameter η(x) =
x

x+ θ
, for any x ∈ R+, and for fixed θ > 0.

Find the Bayes classifier for this model (i.e. the minimizer of L(g) = P(Y 6= g(X))
over all measurable classifiers g : R+ → {0, 1}. Give the expression of the Bayes error
L∗ = L(g∗) in the case where PX = U([0, αθ]) with α > 1. What is the value of α that
maximizes L∗ ?

Exercise 3 - Let X = (T,U, V )T où T,U, V IID real-valued random variables with
exponential distribution E(1). Define Y = I{T + U + V < θ} with fixed θ > 0.

1. Find the Bayes classifier g∗(T,U) when V is not observed. Give the expression of
the classification error of g∗ (also called Bayes error). Compute it for θ = 9.

2. Now assume that only T is observed, and address the same questions as above.

3. Propose a classifier for X when none of T,U, V are observed. What is its classifica-
tion error ?
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Exercise 4 - Consider (X,Y ) a random pair that models classification data with labels
in {0, 1}. Define the following classification error

Lω(g) = E
(
2ω(Y ) · I{Y 6= g(X)}

)
where ω(0) + ω(1) = 1.

1. Find the optimal elements (minimizer, error) for this risk.

2. Justify the interest of such an Lω in practice ?

3. Now consider the unit square in R2.

(a) Plot the curves defined by g 7→ (P{g(X) = 1 | Y = 0},P{g(X) = 1 | Y = 1})
when g varies such that Lω(g) = C with C fixed, for different values of C.

(b) Same question but assuming now that P{g(X) = 1} = C with C fixed.

Exercise 5 - Consider (X,Y ) a random pair that models classification data with labels
in {0, 1}. We fix c > 0 and we consider classifiers with reject option g : Rd → {R, 0, 1},
that are evaluated with the following risk functional :

LR(g) = P{Y 6= g(X), g(X) 6= R}+ cP{g(X) = R} .

What is the minimizing argument of LR(g) over all possible classifiers g with reject option ?
Give a practical interpretation of the result.

Exercise 6 - We consider the model for classification data where X is a random vector
on Rd and Y is a random variable taking values in {−1,+1}. We denote η(x) = P{Y =
+1 | X = x} the posterior probability. We consider the following problems for which the
question is to compute the optimal decision rule g∗ or f∗ - please also provide the main
proof arguments.

1. Criterion to minimize : R(g) = E
(
(Y − g(X))2

)
where g : Rd → {−1,+1}

2. Criterion to minimize : R(f) = E
(
(Y − f(X))2

)
where f : Rd → R

3. Criterion to minimize : A(f) = E
(
log(1+e−Y f(X))

)
where f : Rd → R∪{−∞,+∞}.

Explain why such criteria are relevant for the binary classification problem.
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