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Introduction to Statistical Learning

Exercise sheet n°1

Exercise 1 - Consider the binary classification model where the random pair (X,Y") has
distribution P over R x {0,1} and :

L(X|Y =0)=u([0,6])
LX|Y =1)=u([0,1])
p=PY =1)

with p, 0 € (0,1) fixed. Compute the posterior probability n(x) =P(Y =1 | X = x), for
any x € R, as a function of p, §. What if § = 1/27

Exercise 2 - Consider the binary classification model where the random pair (X,Y") has
distribution P over R4 x {0,1} and :

— the marginal distribution of X over R, is denoted Px

— the conditional distribution of Y given X = x is a Bernoulli distribution with

parameter 7n(z) = xL—i-H’ for any x € R, and for fixed 6 > 0.

Find the Bayes classifier for this model (i.e. the minimizer of L(g) = P(Y # ¢(X))
over all measurable classifiers ¢ : Ry — {0,1}. Give the expression of the Bayes error
L* = L(g*) in the case where Px = U([0,ad]) with o > 1. What is the value of a that
maximizes L*?

Exercise 3 - Let X = (T,U, V)T ou T,U,V IID real-valued random variables with
exponential distribution £(1). Define Y = I{T'+ U + V < 6} with fixed § > 0.

1. Find the Bayes classifier ¢*(7',U) when V is not observed. Give the expression of
the classification error of g* (also called Bayes error). Compute it for § = 9.

2. Now assume that only T is observed, and address the same questions as above.

3. Propose a classifier for X when none of T, U,V are observed. What is its classifica-
tion error ?
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Exercise 4 - Consider (X,Y) a random pair that models classification data with labels
in {0,1}. Define the following classification error

Lu(g9) = EQw(Y) - I{Y # g(X)})
where w(0) + w(1) = 1.
1. Find the optimal elements (minimizer, error) for this risk.
2. Justify the interest of such an L, in practice?
3. Now consider the unit square in R2.
(a) Plot the curves defined by g — (P{g(X)=1|Y =0},P{g(X) =1]Y =1})
when ¢ varies such that L, (g) = C with C fixed, for different values of C.
(b) Same question but assuming now that P{g(X) =1} = C with C fixed.

Exercise 5 - Consider (X,Y) a random pair that models classification data with labels
in {0,1}. We fix ¢ > 0 and we consider classifiers with reject option g : R? — {R,0,1},
that are evaluated with the following risk functional :

Lr(g) =P{Y # g(X),g(X) # R} + cP{g(X) = R} .

What is the minimizing argument of Lr(g) over all possible classifiers g with reject option ?
Give a practical interpretation of the result.

Exercise 6 - We consider the model for classification data where X is a random vector
on R? and Y is a random variable taking values in {—1,+1}. We denote n(z) = P{Y =
+1| X = z} the posterior probability. We consider the following problems for which the
question is to compute the optimal decision rule g* or f* - please also provide the main
proof arguments.

1. Criterion to minimize : R(g) = E((Y — g(X))?) where g : R? — {—1,+1}
2. Criterion to minimize : R(f) = E((Y — f(X))?) where f : R - R
3. Criterion to minimize : A(f) = E(log(1+e_yf(x))) where f : R? — RU{—o00, +-00}.

Explain why such criteria are relevant for the binary classification problem.
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