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Exercise 1 - Consider a learning problem with objective (to be minimized) L(g) =
E
(
`(Z, g)

)
where Z is the observation vector with distribution P , g is the decision rule and

` is a positive loss function. Now let Z1, . . . , Zn be an IID sample from the distribution P
and L̂n(g) = 1

n

∑n
i=1 `(Zi, g) the empirical risk of the rule g.

We introduce the following elements :

— G1, G2, . . . is a sequence of function classes,

— g∗1, g∗2, . . . is the corresponding sequence of optimal decision rules in the sense that
g∗k = arg minGk L(g) for k ≥ 1,

— ĝ
(1)
n , ĝ

(2)
n , . . . is the corresponding sequence of ERM for the empirical risk L̂n,

— Ĉ1, Ĉ2, . . . is a sequence of nonnegative random variables.

We now define the following strategy with output :

ĝn = ĝ(k̂)n

where
k̂ = arg min

k≥1
(L̂n

(
ĝ(k)n

)
+ Ĉk) .

1. Explain briefly the rationale behind this strategy.

2. We assume that there exists some γ > 0 such that, for any k ≥ 1 and n ≥ 1, the
random variable Ĉk satisfies the following inequalities :

P(Ĉk ≤ (L− L̂n)(ĝ(k)n )) ≤ γ

n2k2
,

and
P(Ĉk ≤ (L̂n − L)(g∗k)) ≤

γ

n2k2
.

Show that, in this case, there is some δ(γ, n) > 0 such that, with probability at least
(1− δ(γ, n)), the following inequality holds :

L(ĝ)− L∗ ≤ inf
k≥1

(L∗k − L∗ + 2Ĉk) .

where L∗k = L(g∗k) = infg∈Gk L(g) denotes the optimal error in Gk and L∗ = inf L.

3. Give some examples of machine learning algorithms whose behavior could be un-
derstood with this framework. Please provide short but precise answers.
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Exercise 2 - Consider the setup of preference learning where we observe an IID sample
of triples (X1, X

′
1, Y1), . . . , (Xn, X

′
n, Yn). The probabilistic model assumes that, for each

i, the triple (Xi, X
′
i, Yi) is such that Xi, X

′
i are IID random vectors over Rd and Yi is a

random variable over {−1, 0,+1}. We define the ranking error of a preference rule g : Rd →
{−1, 0,+1} as :

L(g) = P{Y 6= 0, Y · (g(X ′)− g(X)) ≤ 0}

ans the empirical margin ranking error as :

L̂n,ρ(g) =
1

n

n∑
i=1

mρ(Yi · (g(X ′i)− g(Xi))

where the margin loss is defined, for any ρ > 0, by

mρ(t) = I{t ≤ 0}+ I{0 ≤ t ≤ ρ}
(

1− t

ρ

)
.

Now consider a class G of preference rules and define :

G̃ = {(x, x′, y) 7→ y(g(x′)− g(x)) : g ∈ G} .

1. Provide an upper bound of the empirical Rademacher average of G̃ in terms of the
empirical Rademacher average of G.

2. Show that mρ is Lipschitz and provide its Lipschitz constant.

3. Which inequality relates the empirical Rademacher average of the loss class mρ ◦ G̃
to the empirical Rademacher average of G̃ ? Provide a proof of this inequality.

4. Show that, for any δ ∈ (0, 1), we have, with probability at least 1− δ : for any g ∈ G

E(mρ(y(g(x′)− g(x))) ≤ L̂n,ρ(g) + c1R̂n(mρ ◦ G̃) + c2(n, δ)

for some c1 and c2(n, δ) that will have to be given explicitly.

5. Deduce from the previous question a margin error bound for L(g) that holds with
large probability for any g ∈ G and which involves the empirical ranking error of g
over the sample and the complexity of G.

6. Specify the previous result to the case of a linear class of functions where G = FM =
{x 7→ wTx : w ∈ Rd, ‖w‖2 ≤M} .

7. What kind of algorithm can be justified by the inequalities obtained in the two
previous questions.

8. Propose an algorithm based on convex risk minimization for the preference learning
problem. Formulate it precisely in pseudocode and explain what theoretical justifi-
cation could be provided.
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Exercise 3 - Consider the setup of supervised binary classification with the usual nota-
tions (labels are in {−1,+1}). We consider a convex risk minimization strategy to derive
a soft classifier (real-valued decision rule) with an exponential loss function based on the
following functional : for any h : Rd → R,

Ân(h) =
1

n

n∑
i=1

exp (−Yi · h(Xi))

1. Justify briefly the use of such a functional for the supervised binary classification
problem.

2. Consider convex weights π(i) over the sample points : for any i = 1, . . . , n, π(i) ≥ 0
and

∑n
i=1 π(i) = 1. We introduce the following functional :

for any binary {−1, 1}-valued classifier g,

ε(g) =
n∑
i=1

π(i)I{Yi · g(Xi) = −1}

Provide an expression of π(i) such that : for any fixed h, for α ∈ R, minimizing

g 7→ ∂An(h+ αg)

∂α

∣∣∣∣
α=0

is equivalent to minimizing ε(g).

3. We propose to build decision rules h of the form hT =
∑T

t=1 αtgt where the αt’s are
real-valued coefficients and gt’s are simple classifiers taking their values in {−1, 1}.
Propose an algorithm relying on an iterative principle to determine the updates of
(αt, gt).

4. Give the explicit expression of αt at every iteration of the algorithm. Hint : We may
consider the zero of the function α 7→ ∂An(ht−1+αgt)

∂α .

5. What are the parameters of the algorithm and how to calibrate them ?
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