ENS PARIS-SACLAY Master 2 MVA

Introduction to Statistical Learning

Mid-term exam

Duration : 2h - Lecture notes allowed

Reminder on main definitions and results

The indicator function I{{2} takes the value 1 if € is true, and 0 otherwise.

If A denotes a set, then the notation |A| denotes the cardinality of A.

Union bound : P{AU B} < P{A} + P{B} where A and B are events.

IID means Independent and Identically Distributed.

Law of iterated expectation : E(U) = E(E(U | V)) where U, V are random variables.

_ 1 <&
Hoeffing’s inequality : Consider Zi, ..., Z, IID over [0,1] and Z, - E Z;. We
n
i=1

have, for any ¢t > 0 B
P{Z, —E(Z1) > t} < exp(—2nt?)

and
P{Z, —E(Z)) < —t} < exp(—2nt?)

Subadditivity of supremum operator : sup(f + g) < sup(f) + sup(g) and sup(f) —
sup(g) < sup(f —g).

McDiarmid inequality : let A be a function of n variables z1,...,z, satisfying the
uniform bounded differences assumption with constant c,...,c : for any index 4,
sup  |h(z1, ..y xn) — A1, T, T i1 )| S (1)

/
L1y T, Ty

Then, we have that : for any ¢ > 0,

P{h(X1,...,Xp) —E(h(X1,...,X,)) >t} <exp (-73122) : (2)
and o2
P{h(X1,...,X,) —E(h(X1,...,X,)) < —t} <exp <—nc2> : (3)

The empirical Rademacher complexity of G wrt to the sample Z]' = {Z;,...,Z,} is

defined as :
A ) (4)

where €1,...,&, are IID Rademacher random variables, and they also are inde-
pendent of Z7.

ﬁn(g,Z) =K <sup 1 Zaig(ZZ-)

n
9€9 i

The Rademacher complexity of G is defined as :

R.(9.2) =E(Rn(G. 2)) (5)
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Exercice 1 - Consider IID random pairs (X,Y) and (X’,Y’) over R% x ). Set the
following posterior probabilities :

Voo’ €RY pi(waf) =P{Y -Y'>0|X =2,X" =2}
p—(z,2/) =P{Y -Y' <0|X =z2,X'=2'}

and for any preference rule 7 : R? x R? — {—1,1}, consider the pairwise error measure
Lim)=P{(Y -Y')-7(X,X') <0} .

1. Find the Bayes rule 7* and the Bayes error L* = L(7*) for this problem, as well as
the excess of risk L(w) — L* for any preference rule = (will involve p; and p_).

2. Assume Y = {—1,+1} and denote by n(z) = P{Y = +1 | X = z}. Provide the
expressions for pi(z,2’) and p_(z,2’) and discuss how the behavior of n could lead
to difficult situations for the learning process to be efficient.

3. Assume now that J = R and that ¥ = m(X) + o(X) - N where m and o are
Px-measurable functions, N is a random noise variable with normal distribution
N(0,1), while N and X are independent random variables. Provide the expressions
for py(x,2’) and p_(z,2’) in this case and discuss the relation between properties of
the model and the learning process.

Exercise 2 - Consider the plain binary classification problem with a finite class G of
candidate decision rules (classifiers) from supervised data (X1,Y1),..., (X, Y,) where the
(X;,Y;)’s are IID random pairs over R? x {0,1}. We set the empirical classification error
of a classifier g to be Ly(g) = LS I{g(X;) # Yi}. We want to provide guarantees over
the true classification error L(g) for any g € G.

1. Give an upper bound on the deviation probability P{maxycg |L(g) — Ly, (g9)| > t} for

any t > 0.

2. Deduce an upper bound on L(g) that holds for any g € G with a probability at least
of 1 — §. The upper bound shall depend on L,(g), d, |G|, n.

3. Consider the algorithm that outputs g, = argmin g En(g) Propose a meaningful
upper bound of the difference L(g,,)— L(g*) where g* is the Bayes classifier. Comment
on the choice of the class G.

4. Assume for this question that G is countable and not a finite class of classifiers. Is it
possible to derive a similar bound as in the previous question ? Please provide precise
arguments to support your answer.
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Exercise 3 - We consider the setup of binary classification where X is a random vector
over R? and Y is a random variable taking values in {—1,+1}.
We denote n(z) =P{Y =1| X =z}

1.

Express the minimizing function of the criterion A(f) = E(logy(1 + e Y/(X))) as a
function of 1 in the following cases :

(i) among functions f: R% — {—1,+1}
(ii) among functions f : RY — RU {—o0, +00}
In the case (ii), compute the minimum of A(f).

Explain why the minimizers obtained are relevant if the criterion of interest is
the classification error? Please provide precise technical arguments with explicit
constants.

Exercise 4 - Let G be a class of {0, 1}-valued functions over R?%. Let (X1,Y7),..., (X, Yy)
an IID sample of classification data in R? x {0, 1}. Set § > 0.

1.

Show that for fixed g, the empirical Rademacher complexity ﬁn(g,X ) seen as a
function of X1,...,X,, satisfies the bounded differences condition.

Show that, with probability at least 1 — ¢ :

Rp(G, X) < Ra(G,X) + bg;/&

3. Set F={(z,y) » {y # g(z)} : g € G} and relate R, (F,(X,Y)) to Rn(G, X).

4. Consider the binary classification problem. Given a class G of candidate classifiers,

what is the strategy that selects a classifier out of G and for which performance
can be explained by a control of the Rademacher average ? Provide a mathematical
argument for performance prediction of the learning strategy.
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