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Introduction to Statistical Learning

Mid-term exam

Duration : 2h - Lecture notes allowed

Reminder on main definitions and results

— The indicator function I{Ω} takes the value 1 if Ω is true, and 0 otherwise.

— If A denotes a set, then the notation |A| denotes the cardinality of A.

— Union bound : P{A ∪B} ≤ P{A}+ P{B} where A and B are events.

— IID means Independent and Identically Distributed.

— Law of iterated expectation : E(U) = E(E(U | V )) where U , V are random variables.

— Hoeffing’s inequality : Consider Z1, . . . , Zn IID over [0, 1] and Zn =
1

n

n∑
i=1

Zi. We

have, for any t > 0
P{Zn − E(Z1) > t} ≤ exp(−2nt2)

and
P{Zn − E(Z1) < −t} ≤ exp(−2nt2)

— Subadditivity of supremum operator : sup(f + g) ≤ sup(f) + sup(g) and sup(f) −
sup(g) ≤ sup(f − g).

— McDiarmid inequality : let h be a function of n variables x1, . . . , xn satisfying the
uniform bounded differences assumption with constant c, . . . , c : for any index i,

sup
x1,...,xn,x′

i

|h(x1, . . . , xn)− h(x1, . . . , xi−1, x
′
i, xi+1 . . . , xn)| ≤ c . (1)

Then, we have that : for any t > 0,

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≥ t} ≤ exp

(
− 2t2

nc2

)
. (2)

and

P{h(X1, . . . , Xn)− E
(
h(X1, . . . , Xn)

)
≤ −t} ≤ exp

(
− 2t2

nc2

)
. (3)

— The empirical Rademacher complexity of G wrt to the sample Zn
1 = {Z1, . . . , Zn} is

defined as :

R̂n(G, Z) = E

(
sup
g∈G

1

n

n∑
i=1

εig(Zi)

∣∣∣∣∣Zn
1

)
(4)

where ε1, . . . , εn are IID Rademacher random variables, and they also are inde-
pendent of Zn

1 .

— The Rademacher complexity of G is defined as :

Rn(G, Z) = E
(
R̂n(G, Z)

)
(5)
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Exercice 1 - Consider IID random pairs (X,Y ) and (X ′, Y ′) over Rd × Y. Set the
following posterior probabilities :

∀x, x′ ∈ Rd, ρ+(x, x′) = P{Y − Y ′ > 0 | X = x,X ′ = x′}
ρ−(x, x′) = P{Y − Y ′ < 0 | X = x,X ′ = x′}

and for any preference rule π : Rd × Rd → {−1, 1}, consider the pairwise error measure

L(π) = P
{

(Y − Y ′) · π(X,X ′) < 0
}
.

1. Find the Bayes rule π∗ and the Bayes error L∗ = L(π∗) for this problem, as well as
the excess of risk L(π)− L∗ for any preference rule π (will involve ρ+ and ρ−).

2. Assume Y = {−1,+1} and denote by η(x) = P{Y = +1 | X = x}. Provide the
expressions for ρ+(x, x′) and ρ−(x, x′) and discuss how the behavior of η could lead
to difficult situations for the learning process to be efficient.

3. Assume now that Y = R and that Y = m(X) + σ(X) · N where m and σ are
PX -measurable functions, N is a random noise variable with normal distribution
N (0, 1), while N and X are independent random variables. Provide the expressions
for ρ+(x, x′) and ρ−(x, x′) in this case and discuss the relation between properties of
the model and the learning process.

Exercise 2 - Consider the plain binary classification problem with a finite class G of
candidate decision rules (classifiers) from supervised data (X1, Y1), . . . , (Xn, Yn) where the
(Xi, Yi)’s are IID random pairs over Rd × {0, 1}. We set the empirical classification error
of a classifier g to be L̂n(g) = 1

n

∑n
i=1 I{g(Xi) 6= Yi}. We want to provide guarantees over

the true classification error L(g) for any g ∈ G.

1. Give an upper bound on the deviation probability P{maxg∈G |L(g)− L̂n(g)| > t} for
any t > 0.

2. Deduce an upper bound on L(g) that holds for any g ∈ G with a probability at least
of 1− δ. The upper bound shall depend on L̂n(g), δ, |G|, n.

3. Consider the algorithm that outputs ĝn = arg ming∈G L̂n(g). Propose a meaningful
upper bound of the difference L(ĝn)−L(g∗) where g∗ is the Bayes classifier. Comment
on the choice of the class G.

4. Assume for this question that G is countable and not a finite class of classifiers. Is it
possible to derive a similar bound as in the previous question ? Please provide precise
arguments to support your answer.
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Exercise 3 - We consider the setup of binary classification where X is a random vector
over Rd and Y is a random variable taking values in {−1,+1}.
We denote η(x) = P{Y = 1 | X = x}.

1. Express the minimizing function of the criterion A(f) = E(log2(1 + e−Y f(X))) as a
function of η in the following cases :

(i) among functions f : Rd → {−1,+1}
(ii) among functions f : Rd → R ∪ {−∞,+∞}

2. In the case (ii), compute the minimum of A(f).

3. Explain why the minimizers obtained are relevant if the criterion of interest is
the classification error ? Please provide precise technical arguments with explicit
constants.

Exercise 4 - Let G be a class of {0, 1}-valued functions over Rd. Let (X1, Y1), . . . , (Xn, Yn)
an IID sample of classification data in Rd × {0, 1}. Set δ > 0.

1. Show that for fixed g, the empirical Rademacher complexity R̂n(G, X) seen as a
function of X1, . . . , Xn satisfies the bounded differences condition.

2. Show that, with probability at least 1− δ :

Rn(G, X) ≤ R̂n(G, X) +

√
log(1/δ)

2n

3. Set F = {(x, y) 7→ I{y 6= g(x)} : g ∈ G} and relate Rn

(
F , (X,Y )

)
to Rn(G, X).

4. Consider the binary classification problem. Given a class G of candidate classifiers,
what is the strategy that selects a classifier out of G and for which performance
can be explained by a control of the Rademacher average ? Provide a mathematical
argument for performance prediction of the learning strategy.
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