

Responsible Machine Learning

Master MVA

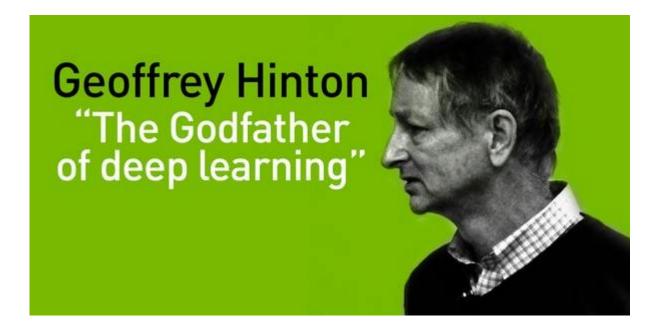
Introduction on the technical aspects of the course

Nicolas Vayatis

When scientists go to marketing...

"They should stop training radiologists now. It's just completely obvious within five years that deep learning is going to do better than radiologists. It might take ten years, but we've got plenty of radiologists already. I said this at a hospital, and it didn't go down too well."

— Geoffrey Hinton, Toronto, 2016

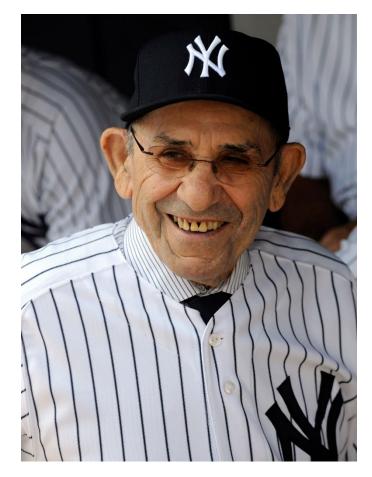


Source: < https://www.youtube.com/watch?v=2HMPRXstSvQ&t=2s >

Wiser than « Yogi » Berra?

« It's tough to make predictions, especially about the future. »

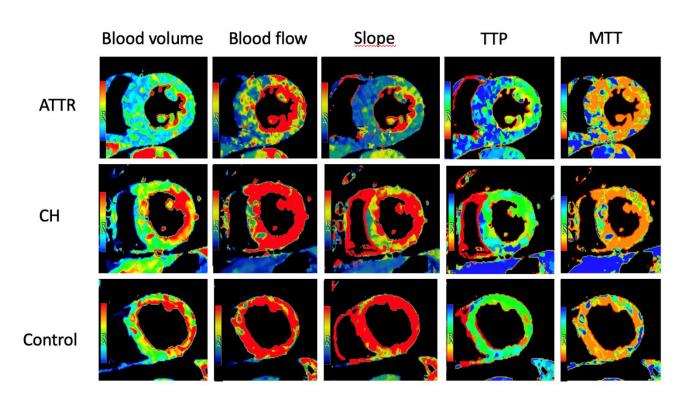
« In theory, there is no difference between theory and practice. In practice, there is. »



Lawrence Peter Berra, 1935-2015

Being Geoffrey Hinton...

Classification and automatic indexing of medical images: a typical machine learning task...



3 classes:

- ATTR : amylose cardiaque
- CH: autres maladies
- Contrôle

8 grandeurs d'intérêt (gold standards) :

- fraction d'éjection du ventricule gauche
- masse du ventricule gauche
- 5 paramètres de perfusion du tissu cardiaque
- volume extra cellulaire

The road to wisdom...

Google

Josh Taylor and Alex Hern
Tue 2 May 2023 12.23 BST

f 💆 🖾

'Godfather of AI' Geoffrey Hinton quits Google and warns over dangers of misinformation

The neural network pioneer says dangers of chatbots were 'quite scary' and warns they could be exploited by 'bad actors'

Dr Geoffrey Hinton, the 'godfather of AI', has left Google. Photograph: Linda Nylind/The Guardian

The man often touted as the godfather of AI has quit Google, citing concerns over the flood of misinformation, the possibility for AI to upend the job market, and the "existential risk" posed by the creation of a true digital intelligence.

Source: The Guardian, May 2, 2023

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Adresse e-mail validée de cs.toronto.edu - <u>Page d'accueil</u>

machine learning psychology artificial intelligence cognitive science computer science

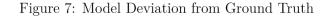
Source: Google Scholar, July 2023

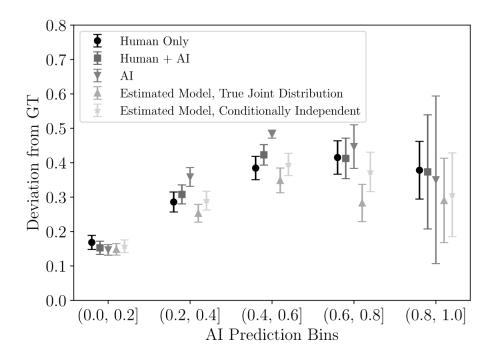
CENTRE

The scientific response to the Toronto statement

- « Using an experiment on professional radiologists that varies the availability of AI support and contextual information, it is shown that
- (i) providing AI predictions does not uniformly increase diagnostic quality, and
- (ii) providing contextual information does increase quality.

The results also show that, unless the mistakes the authors document can be corrected, **the optimal solution involves delegating cases either to humans or to Al but rarely to a human assisted by Al**. »





Note: This figure shows the performance of the different modalities that we consider for the optimal collaborative system. Cases are either decided by only the radiologist, only the AI, or the radiologist with access to the AI. These performance measures are constructed from our treatment effect analysis.

Source: Agarwal et al. (2023). Combining Human Expertise with Artificial Intelligence: Experimental Evidence from Radiology*, Preprint, MIT.

Al and ethics

(following slides are courtesy of Theodoros Evgeniou)

Key Points about the challenges of AI adoption

- 1. Al is unlike other technologies in what ways?
- 2. It is essential to consider human factors when developing Al
- 3. Many frameworks and tools to manage AI risks are under development this is a very rich area for research and innovations

> It is essential to align regulations with key characteristics of Al

What makes it risky...

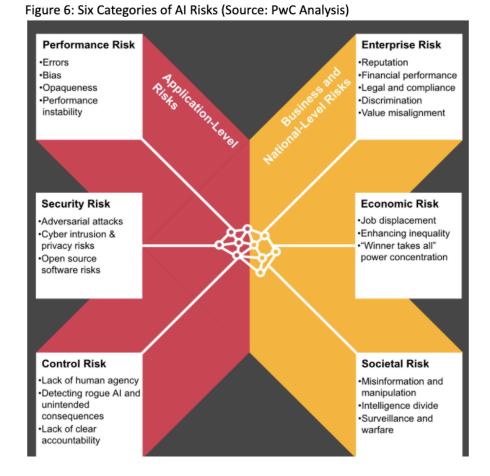
- 1. It makes (increasingly complex) decisions (unlike other technologies)
- 2. No 100% accuracy: by nature it makes mistakes (for sure)
- 3. Large Scale: small errors can multiply to major risks or impact
- 4. Continuous Learning: what you have tomorrow is not what you have today!
- 5. Evolving environment: AI models typically have a lifetime
- 6. New vulnerabilities: adversarial attacks, lack of robustness, cybersecurity
- 7. Challenging accountability: complex multi-component systems, data complexities, multi-party, open source, etc.
- 8. Ethical issues: Fairness, Accountability, Transparency (the FAT Model)

Al risks

-Application-level Performance risk Security risk Control risk

-Business and National-level Enterprise risk **Economic risk** Societal risk

+Mankind level?

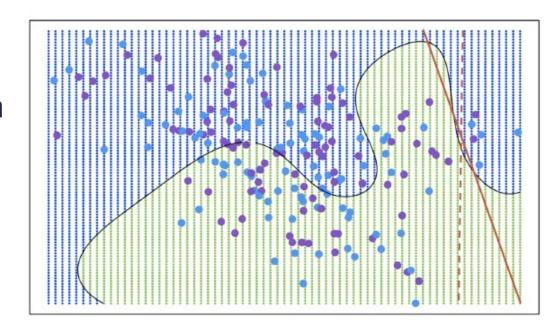


Key Points about the challenges of AI adoption

- 1. Al risks
- 2. Human factors when developing Al
- 3. Frameworks and tools to manage AI risks

Beware of Explainable AI – Human Factors

- Lack of robustness of explanations may harm trust
- 2. Risk of overconfidence and risk taking
- 3. Risk of narrative fallacy
- 4. ... but not all users are the same



Human Factors example

WHY WAS MY LOAN APPLICATION DENIED? AN EMPIRICAL EVALUATION OF LAY PEOPLE'S PREFERENCES FOR EXPLANATIONS OF ALGORITHMIC DECISIONS

A PREPRINT

Yanou Ramon

Dept. of Engineering Management University of Antwerp, Belgium Tom Vermeire

Dept. of Engineering Management University of Antwerp, Belgium David Martens

Dept. of Engineering Management University of Antwerp, Belgium

Theodoros Evgeniou Dept. of Decision Sciences INSEAD Europe Campus, France Olivier Toubia Dept. of Marketing Columbia University, United States Based on her browsing activity, Emma was shown the following ad:

If you were Emma, which of the two explanations (shown below) that explain why you are seeing this advertisement, would you prefer?

(A)

IF you had not visited any of the following web pages:

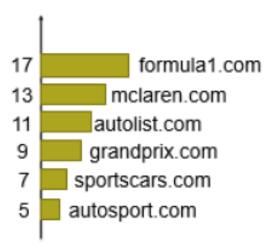
- redbull.com
- motor1.com
- fourwheeler.com

→ THEN

this ad would **not** be shown to you

(B)

The ad is based on the following topics of web pages you visited:



Based on her personal data, Helena's travel loan application got rejected.

If you were Helena, which explanation would you want the bank to show you for explaining this decision?

(A)

IF the data related to the following categories was different:

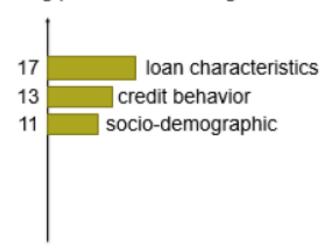
- loan characteristics
- socio-demographic
- credit behavior
- spending behavior
- macro-economic context
- family situation

→ THEN

the loan application would be accepted

(B)

the decision is based on the following personal data categories:



Explainable AI: Not a one (algo) size fits all

Sample Size	216 respondents recruited on the MTurk platform all based in the United States
Attributes Format	Levels Counterfactual explanation, One-sided importance-ranking, Two-sided importance-ranking
Complexity	Small (three features), Large (six features)
Specificity	Low-level, High-level
Socio-demographic variables	Age, Gender (=1 if female, =0 if male), Education (High school, Bachelor, Master)
Cognitive Reflection Test (CRT)	Score on test for analytical reasoning (CRT scores lie between 0 and 3)

Explainable AI: Not a one (algo) size fits all

Targeted Advertising

Attribute: level	Mean part-worth utility	95% CI
Format: Counterfactual Format: Importance-ranking one-sided Complexity: Small-sized Specificity: Low-level	-0.44^{***} 0.77^{***} -0.32^{***} -0.16^{***}	[-0.63, -0.24] [0.54, 1.10] [-0.50, -0.16] [-0.29, -0.04]

Credit Scoring

Attribute: level	Mean part-worth utility	95% CI
Format: Counterfactual	0.11	[-0.06, 0.29]
Format: Importance-ranking one-sided	-0.11	[-0.64, 0.28]
Complexity: Small-sized	-0.44***	[-0.58, -0.32]
Specificity: Low-level	0.38***	[0.19, 0.61]

Key Points about the challenges of AI adoption

- 1. Al risks
- 2. Human factors when developing Al
- 3. Frameworks and tools to manage AI risks

Emerging tools and processes

- 1. Software Toolkits
- Documentation tools and frameworks

Working Paper

2021/04/DSC/TOM

- 3. Auditing of Al Systems
- 4. Standards and Certification
- 5. Monitoring over the Al Lifecycle

Implementing Al Principles: Frameworks, Processes, and Tools

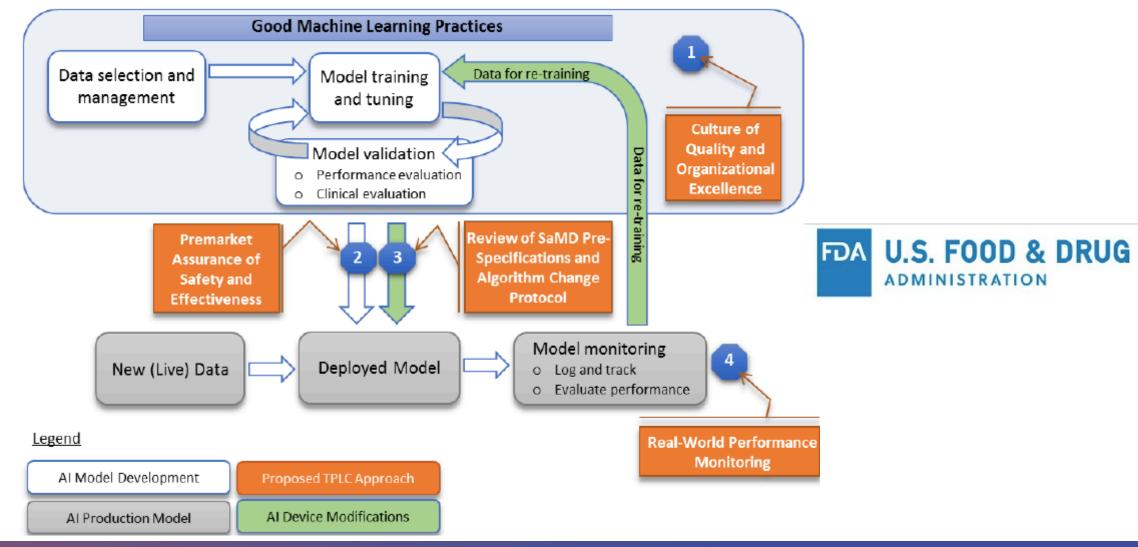
> Pal Boza INSEAD, pal.boza@insead.edu

Theodoros Evgeniou INSEAD, theodoros.evgeniou@insead.edu

Components of an Al system



Good practices and AI lifecycle: the case of the FDA



Some example tools to manage AI risks

Table 1: Key Software Toolkits and Frameworks for Implementing AI Principles

IBM Factsheets

Aequitas

IBM Fairness 360

Toolkit	Developer	
Fairness Tool ⁷¹	Accenture	
Foolbox 72	Bethge Lab	
CleverHans 73	CleverHans Lab	
Model Guardian ⁷⁴	Deloitte	
	Digital Civil Society Lab,	
Digital Impact Toolkit ⁷⁵	Stanford Center on Philanthropy and Civil	
	Society	
Deon ⁷⁶	Driven Data	
Fairness Flow	Facebook	
What-If Tool ⁷⁸	Google	
Ethics & Algorithms	GovEx, the City and County of San Francisco,	
Toolkit ⁷⁹	Harvard DataSmart, and Data Community DC	
AI Fairness 360 ^{80,81}	IBM	
AI Explainability 36082	IBM	
Adversarial Robustness	IBM	
Toolbox ⁸³ (ART)	IDIVI	
LinkedIn Fairness Toolkit ⁸⁴	LinkedIn	
(LiFT)	Linkedin	
Fairlearn ⁸⁵	Microsoft	
InterpretML ⁸⁶	Microsoft	
Harms Modelling ⁸⁷	Microsoft	
Community Jury ⁸⁸	Microsoft	
Skater ⁸⁹	Oracle	
REVISE: REvealing VIsual	Princeton University	
biaSEs ⁹⁰	Timecton oniversity	
Responsible AI Toolkit ⁹¹	PwC	
audit-AI ⁹²	Pymetrics	
FAT Forensics 93	University of Bristol	
Aequitas ⁹⁴	University of Chicago Center for	
	Data Science and Public Policy	
Lime ⁹⁵	University of Washington	

Back to radiologists...

