Privacy - Homework

October 26, 2023

1 Plausible deniability example

A sensitive "yes-no" question is asked to the participants of a survey. The following protocol is implemented.

Definition 1 (Hamming's distance) Let D_{1} and D_{2} be two datasets of the same size, the Hamming's distance is define as the number of entries on which they differ.

$$
d\left(D_{1}, D_{2}\right)=\#\left\{i:\left(D_{1}\right)_{i} \neq\left(D_{2}\right)_{i}\right\}
$$

Definition 2 For all $\epsilon>0$, a randomized algorithm A is ϵ-differentially private if, for all $S \subset \operatorname{Im}(A)$ and for all D_{1} and D_{2} datasets such as $d\left(D_{1}, D_{2}\right)=1$, we have

$$
\frac{\mathbb{P}\left(A\left(D_{1}\right) \in S\right)}{\mathbb{P}\left(A\left(D_{2}\right) \in S\right)} \leq \mathrm{e}^{\epsilon}
$$

1. Let D_{1} and D_{2} be two sets of answers of size n, differing in their last entry: $\left(D_{1}\right)_{n}=$ Yes and $\left(D_{1}\right)_{n}=$ No. Show that the protocol is $\ln (3)$ differentially private.
2. Still in the case of a "yes-no" question, propose an ϵ-differentially private protocol.

2 Mechanisms

Definition 3 (p-sensitivity) $\Delta_{p}(A)=\max _{d\left(D_{1}, D_{2}\right)=1}\left\|A\left(D_{1}\right)-A\left(D_{2}\right)\right\|_{p}$
Theorem 1 (Laplace mechanism) Let $\epsilon>0$, A be an algorithm with values in \mathbb{R}^{d} and D a dataset. Then, $\mathcal{M}_{\text {Lap }}(A, D, \epsilon)=A(D)+\mathbf{Z}$ with $\mathbf{Z} \sim$ $\operatorname{Lap}\left(\frac{\Delta_{1}(A)}{\epsilon}\right)^{\otimes d}$ is $\epsilon-D P$.

Theorem 2 (Gaussian mechanism) Let $\epsilon, \delta>0$, A be an algorithm with values in \mathbb{R}^{d} and D a dataset. Then, $\mathcal{M}_{\text {Gauss }}(A, D, \epsilon, \delta)=A(D)+\mathbf{Z}$ with $\mathbf{Z} \sim \mathcal{N}\left(0, \frac{2 \ln \frac{2}{\delta} \Delta_{2}(A)^{2}}{\epsilon^{2}}\right)^{\otimes d}$ is $(\epsilon, \delta)-D P$.

Definition $4((\alpha, \beta)$-accuracy) A mechanism \mathcal{M} is (α, β)-accurate w.r.t an algorithm A if for all dataset D and with probability at least $1-\beta$, we have

$$
\|\mathcal{M}(A, D, \epsilon)-A(D)\|_{\infty} \leq \alpha(\epsilon)
$$

1. Recalling that the p.d.f. of a random variable sampled according to $\operatorname{Lap}(a)$ is equal to $f(x)=\frac{1}{2 a} \mathrm{e}^{-\frac{|x|}{a}}$, prove Theorem 1 .
2. Explain why the definition of differential privacy is a "worst case" definition. How can we relax it?
3. Compute $\mathbb{E}\left[\left\|\mathcal{M}_{\text {Lap }}(A, D, \epsilon)-A(D)\right\|_{1}\right]$
4. For a fixed β, find α such that the Laplace mechanism is (α, β)-accurate.
5. For a fixed β, find α such that the Gaussian mechanism is (α, β)-accurate.
6. When d is big, which mechanism seems to be more appropriate?
