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What privacy means in data analysis

• Consider a database and a user who makes queries on the
database and receives answers.

• Suppose information about Zorro can be found in the
database.

• Protecting the privacy of Zorro means the user should not
learn anything new about Zorro she does not already know.

• If the user may learn something about him then it should be
some general characteristic of the whole population.



The flaws of privacy-preserving data
analysis

But... what if the purpose of the user is to segment the population
wrt to credit risk or health?

• Then, in order not to unveil the risk status of Zorro, the user
should:

• either not know Zorro belongs to the database!
• or she should not have access to the features driving the

classifier or risk score!

• Two strategies arise:
• Anonymization
• Summary statistics

Are those two strategies safe? Well...



Reported cases of privacy leaks

• Data leakage in 2020 (at Q3)
• 2,935 publicly reported breaches
• 36 billion records exposed
• Among which: Facebook, Instagram, Microsoft, TikTok,

Google Cloud Server, etc.

• Data breaches with anonymized data by linkage between
different but overlapping databases

• AOL search data leak (2006)
• Netflix prize (2007-2009)

Ref. Narayanan, A. and Shmatikov, V. (2008). Robust
de-anonymization of large sparse datasets. In IEEE Symposium on
Security and Privacy.



The limits of simple ideas



Anonymization is not safe due to linkage

Indeed: 87% of the US population can be identified based on
ZIP/BD/Gender!



Anonymization is not safe due to linkage
on nonsensitive data!

Let U and V be feature vectors of nonsensitive data, S a feature
vector of sensitive data. Assume:

• Database #1 contains (private) data (ID,U,S)

• Database #1a contains (public) anonymized data (U, S)

• Database #2 contains public data (ID,U,V )

Then:

• If U is unique, then ID may be linked to S from DB #1a and
DB #2

• The larger the dimension of U (and/or the smaller the sample
size), the more likely U will be unique



Summary statistics are not safe!

Two types of threats:

1 Differential attacks by querying the data set

Example: average performance of a group of people before
and after a new member joins...

2 Membership inference attacks

Contingency tables or test statistics can actually lead to
recover the identity of an individual if the data set is not too
large.

Example: Intensive research in the field of Genome-wide
association studies (GWAS) [Homer et al. (2008), Wang et al.
(2009), Sei and Ohsuga (2021) ]



Privacy in Machine Learning



Privacy at risk with Machine Learning

• ML algorithms are prone to membership inference and
variants

• An attack is made to determine whether a subject belongs to a
training data set.

• If successful, it becomes possible to infer individual
information: e.g. participating to a clinical study can thus
unveil the fact that the patient was treated in a certain
hospital for a given disease.

• Being prone to membership inference attacks increases the
risk for ML algorithms outcome to be classified as personal
data under the GDPR.

Shokri et al. (2017): Membership inference attacks against
machine learning models
Hu et al. (2021): Membership Inference Attacks on Machine
Learning: A Survey



Privacy vs. Accuracy vs. Sample size

• If sample size is small, one cannot achieve both privacy and
accuracy

• To achieve accuracy, need many features which will eventually
identify the individual if the data set is small

N.B.: large/small sample size should be discussed wrt dimension



(Regularized) Empirical Risk Minimization

• Mother of global Machine Learning procedures: Optimization
of a risk functional formed by the sum of a data-fitting term
and a penalty (regularizer):

f̂ ∈ argmin
f ∈F

{
1

n

n∑
i=1

ℓ(Yi , f (Xi )) + λ pen(f )

}

• In shallow learning: most algorithms boil down to an
optimization problem with explicit penalty

• In the case of deep learning: no explicit regularization
(pen(f ) = 0) but regularization operates through SGD and
operators linking successive layers of computation



Private Empirical Risk Minimization
1. Data perturbation

• Same procedure, perturbed data:

f̂ D ∈ argmin
f ∈F

{
1

n

n∑
i=1

ℓ(Ỹi , f (X̃i )) + λ pen(f )

}

• Example:k-anonymity (Sweeney, 2002)

• Define a set of attributes as quasi-identifiers
• Suppress/generalize attributes and/or add dummy records to

make every record in the dataset indistinguishable from at
least k − 1 other records with respect to quasi-identifiers



k-anonymity example

Question: pros/cons?



Private Empirical Risk Minimization
2. Output perturbation

• Same procedure, change decision rule: f̂ O = T (f̂ ) where

f̂ ∈ argmin
f ∈F

{
1

n

n∑
i=1

ℓ(Yi , f (Xi )) + λ pen(f )

}

• Example: Global Sensitivity Method also referred to as
Laplace or Gaussian mechanisms (Dwork et al., 2006)



Global Sensitivity Method

• Assume D and D ′ are databases which differ by one record

• Let a function Q (query, statistic) based on D or after training
based on D then the global sensitivity of Q is given by:

S(Q) = sup
D,D′

|Q(D)− Q(D ′)|

• Laplace Mechanism: consider the output given by:

Q(D) + Z , where Z ∼ S(Q)

ε
Lap(0, 1)

Notation: Lap(0, 1) is a centered Laplace distribution with
density p(u) = (1/2) exp(−|u|)

Question: why Laplace?



Simple example: ”private” mean

• Assume we have a single feature bounded in [0, 1] in the
database D of size n and Q(D) = D̄

• Then the global sensitivity S(Q) of Q equals 1/n

• Then the Laplace mechanism offers an output perturbation of
the form Q(D) + Z where

Z ∼ 1

nε
Laplace(0, 1)



Other example: linear SVM case

• Consider the following inference principle:

ŵ ∈ argmin
w∈Rd

{
1

n

n∑
i=1

ℓ(Yiw
TXi ) +

λ

2
∥w∥2

}

with ℓ convex

• Pseudocode for private version

Algorithm 1 Private linear SVM with output perturbation
Input: training data {(Xi ,Yi ) : i = 1, . . . , n}, privacy parameter ε, amount of
regularization λ
Solve raw optimization problem to get ŵ
Draw Z = z according to P{Z = z} ∝ e−ε∥z∥

return Compute w̃ = ŵ + z
nλ



Private Empirical Risk Minimization
3. Risk perturbation

• Same procedure, change risk criterion:

f̂ R ∈ argmin
f ∈F̃

{
1

n

n∑
i=1

ℓ(Yi , f (Xi )) + λ p̃en(f )

}

• Example: Private SVM with finite feature maps (Rubinstein et
al., 2009)



Private SVM - second version

• Main ingredients:
• Random and finite feature map and induced kernel
• Dual optimization solver
• Laplace mechanism

• Pseudocode

Algorithm 2 Private linear SVM with objective perturbation
Input: training data {(Xi ,Yi ) : i = 1, . . . , n}, convex loss ℓ, parameter ε,
amount of regularization λ, finite feature map Φ : Rd → RF and induced
kernel
Solve dual optimization problem to get α̃ based on induced kernel
Compute w̃ =

∑n
i=1 α̃iYiΦ(Xi )

Draw IID sample Z = z from Laplace distribution (0, λ)
return Compute w̃R = w̃ + z



Private Empirical Risk Minimization
4. Algorithm perturbation

• Same procedure, change algorithm:

f̂ A ∈ argmin f ∈F

{
1

n

n∑
i=1

ℓ(Yi , f (Xi )) + λ pen(f )

}

• Example: Private SGD (Abadi et al. (2016), Song et al.
(2013))







Differential privacy







Definition of differential privacy
Dwork, McSherry, Nissim, Smith (2006)

• Consider A(S) where A is a randomized algorithm operating
on a data set S

• Let S ′ be a data set which differs from S by one data point.

• We consider that the randomized algorithm will satisfy
differential privacy at level ε (privacy loss) if the following
loglikelihood ratio is uniformly bounded over S ; S ′ and B :

sup
B

sup
S ,S ′

∣∣∣∣ log( P(A(S) ∈ B)

P(A(S ′) ∈ B)

)∣∣∣∣ ≤ ε



Check theorems for Private SVM

• We refer to Chaudhuri et al. (2011) or Rubinstein et al.
(2009)

• Under some assumptions, differential privacy is guaranteed
with some ε



Discussion and further topics related to privacy



Some names on differential privacy

• Cynthia Dwork (Harvard) - 2014 book on ”The Algorithmic
Foundations of Differential Privacy” (with Aaron Roth)

• Helen Nissenbaum (Cornell Tech)

• Catuscia Palamidessi (INRIA, France) - book and Master
course about Foundations of Privacy

• Kamalika Chaudhuri* (UCSD) - NIPS 2017 tutorial

• Aurélien Bellet* (INRIA, France) - Master course on Privacy
Preserving Machine Learning

*more ML flavor in their research

Check workskop series at the Simons Foundation on ”Data
Privacy: Foundations and Applications” - Jan. 15 – May 17, 2019



Typical expected guarantees of
privacy-preserving methods (Dwork, 2014)

• future-proof (side information, post-processing)

• group privacy

• permanence through composition

• programmable



Further topics

• Regulatory - How to account for privacy?

• Implementation - Where to place sanitizers along a pipeline?
How to deal with privacy during the data exploration stage?
Can deep learning preserve the privacy of all its parameters
and still generalize?

• Under constraints - How to optimize privacy budget along
several stages ?

preprocessing/ training/ cross-validation/ testing/
hyperparameter calibration

• Resilience to attacks



Distributed Machine Learning



Why looking for alternative to centralized
learning?

• Latency (IoT, multiplication of data sources, sensors, etc.)

• Privacy

• Jurisdiction (data considered too sensitive to be merged)

• Knowledge sharing (”Winner-Takes-All” effect)



Distributed learning

Generally, the output is a parameter, a gradient or a prediction

• Goal: Estimate the output by optimizing computing power
through distributed optimization

• Assumption 1: Data are collected at the server level

• Assumption 2: Data are equally split between nodes
(machines)

• Final estimate: Aggregation of local estimates by the central
server

• Main setups: One-shot or Multi-round (e.g. stochastic
gradient descent)



Federated learning

• Goal: estimate a common output over multiple nodes
(denominated devices or clients) without having access to
data, enhancing privacy (Important warning: the output can
leak information e.g. memorization property of large models)

• Assumption 1: Data are collected at the node level

• Assumption 2: Nodes do not communicate any observation
data neither to the central server nor between them, but do
transmit their estimate of the output

• Final estimate: Aggregation of local estimates by the central
server



Challenges of federated learning

Federated optimization aims at handling data with the following
properties:

• In the cross-device setting (nodes stand for devices/people):
massively distributed counter to distributed learning
assumptions or cross-silo setting (nodes stand for
institutions/entities), the number of nodes, m, can be very
large and can be much larger than the sample size per node.

• Non-i.i.d. (e.g. algorithm SCAFFOLD or personalization)

• Unbalanced i.e. sample size per node with considerable order
of variations.

• In the cross-device setting: limited communications, with
frequently unavailable nodes.



Algorithm 3 FedAvg [McMahan et al., 2017]
Initialize model parameter θ0 and round t = 0
for each round t = 0,T do

randomly generate St , a subset of all nodes of size ⌊Cm⌋
for each node j ∈ St do

θjt+1 = NodeUpdate(j , θt)
end for
θt+1 =

∑
j wjθ

j
t+1 with wj proportional to the sample size

t = t + 1
end for
return θt+1

Algorithm 4 NodeUpdate(j , θ)
Require: η, f

B = data of client j splitting in batches of size B
for each epoch e ∈ 1..E do

for each batch b ∈ B do
θ = θ − η

B
∇f (θ, b)

end for
end for
return θ



Experimental results
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