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What privacy means in data analysis

Consider a database and a user who makes queries on the
database and receives answers.

Suppose information about Zorro can be found in the
database.

Protecting the privacy of Zorro means the user should not
learn anything new about Zorro she does not already know.

If the user may learn something about him then it should be
some general characteristic of the whole population.



The flaws of privacy-preserving data
analysis

But... what if the purpose of the user is to segment the population
wrt to credit risk or health?

® Then, in order not to unveil the risk status of Zorro, the user
should:

® either not know Zorro belongs to the database!
® or she should not have access to the features driving the
classifier or risk score!

® Two strategies arise:
® Anonymization
® Summary statistics

Are those two strategies safe? Well...



Reported cases of privacy leaks

® Data leakage in 2020 (at Q3)

® 2935 publicly reported breaches

® 36 billion records exposed

® Among which: Facebook, Instagram, Microsoft, TikTok,
Google Cloud Server, etc.

® Data breaches with anonymized data by linkage between
different but overlapping databases

® AOL search data leak (2006)
® Netflix prize (2007-2009)

Ref. Narayanan, A. and Shmatikov, V. (2008). Robust
de-anonymization of large sparse datasets. In IEEE Symposium on
Security and Privacy.



The limits of simple ideas



Anonymization is not safe due to linkage

(Figure inspired from C. Palamidessi)

Diagnosis
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Indeed: 87% of the US population can be identified based on
ZIP/BD/Gender!



Anonymization is not safe due to linkage
on nonsensitive datal

Let U and V be feature vectors of nonsensitive data, S a feature
vector of sensitive data. Assume:

® Database #1 contains (private) data (ID, U, S)

® Database #1a contains (public) anonymized data (U, S)

¢ Database #2 contains public data (ID, U, V)

Then:

e If U is unique, then ID may be linked to S from DB #1a and
DB #2

® The larger the dimension of U (and/or the smaller the sample
size), the more likely U will be unique



Summary statistics are not safe!

Two types of threats:
@ Differential attacks by querying the data set

Example: average performance of a group of people before
and after a new member joins...

® Membership inference attacks

Contingency tables or test statistics can actually lead to
recover the identity of an individual if the data set is not too
large.

Example: Intensive research in the field of Genome-wide
association studies (GWAS) [Homer et al. (2008), Wang et al.
(2009), Sei and Ohsuga (2021) ]



Privacy in Machine Learning



Privacy at risk with Machine Learning

® ML algorithms are prone to membership inference and
variants

® An attack is made to determine whether a subject belongs to a
training data set.

® |f successful, it becomes possible to infer individual
information: e.g. participating to a clinical study can thus
unveil the fact that the patient was treated in a certain
hospital for a given disease.

® Being prone to membership inference attacks increases the

risk for ML algorithms outcome to be classified as personal
data under the GDPR.

Shokri et al. (2017): Membership inference attacks against
machine learning models

Hu et al. (2021): Membership Inference Attacks on Machine
Learning: A Survey



Privacy vs. Accuracy vs. Sample size

® |f sample size is small, one cannot achieve both privacy and
accuracy

® To achieve accuracy, need many features which will eventually
identify the individual if the data set is small

N.B.: large/small sample size should be discussed wrt dimension



(Regularized) Empirical Risk Minimization

® Mother of global Machine Learning procedures: Optimization
of a risk functional formed by the sum of a data-fitting term
and a penalty (regularizer):

fe argmin{ ZE Yi, f(X +)\pen(f)}

feF

® In shallow learning: most algorithms boil down to an
optimization problem with explicit penalty

® In the case of deep learning: no explicit regularization
(pen(f) = 0) but regularization operates through SGD and
operators linking successive layers of computation



Private Empirical Risk Minimization
1. Data perturbation

® Same procedure, perturbed data:

feFr

= argmin{ ZE Y,,f )+ A pen(f)}

® Example:k-anonymity (Sweeney, 2002)

® Define a set of attributes as quasi-identifiers

® Suppress/generalize attributes and/or add dummy records to
make every record in the dataset indistinguishable from at
least k — 1 other records with respect to quasi-identifiers



k-anonymity example

Name Birth date | Zip code | Gender [ Diagnosis =1
Ewen Jordan 1993-09-15 | 13741 M Asthma
Lea Yang 1999-11-07 | 13440 7 Type-1 diabetes
William Weld 1945-07-31 | 02110 M Cancer
Clarice Mueller | 1950-03-13 | 02061 F Cancer
Name Birth date Zip code | Gender | Diagnosis [
1993-09-15 | 13741 M Asthma
1999-11-07 | 13440 F Type-1 diabetes
1945-07-31 | 02110 M Cancer
1950-03-13 | 02061 F Cancer
Quasi identifiers Sensitive attribute
Name Age \ Zip code | Gender | Diagnosis
20-30 | 13*** Asthma
20-30 | 13*** Type-1 diabetes
70-80 | 02*** Cancer
70-80 | 02*** Cancer

Question: pros/cons?



Private Empirical Risk Minimization
2. Output perturbation

~

e Same procedure, change decision rule: 70 = T(f) where

f € argmin {,:: Zn:ﬁ(yi, f(Xi)) + A pen(f)}

feF Py

® Example: Global Sensitivity Method also referred to as
Laplace or Gaussian mechanisms (Dwork et al., 2006)



Global Sensitivity Method

e Assume D and D’ are databases which differ by one record

® Let a function Q (query, statistic) based on D or after training
based on D then the global sensitivity of Q is given by:

S(Q) = sup |Q(D) — Q(D')|

D,D’
® |aplace Mechanism: consider the output given by:

QD)+ Z, where Z~ 5(50) Lap(0,1)

Notation: Lap(0,1) is a centered Laplace distribution with
density p(u) = (1/2) exp(—|ul)

Question: why Laplace?



Simple example: "private” mean

® Assume we have a single feature bounded in [0, 1] in the
database D of size n and Q(D) = D

® Then the global sensitivity S(Q) of Q equals 1/n

® Then the Laplace mechanism offers an output perturbation of
the form Q(D) + Z where

1
Z ~ — Laplace(0,1)
ne



Other example: linear SVM case

e Consider the following inference principle:
1 A
W € argmin { — K(Y,'WTX,')—l-waHz

with ¢ convex

® Pseudocode for private version

Algorithm 1 Private linear SVM with output perturbation
Input: training data {(Xj, Y;) : i =1,...,n}, privacy parameter ¢, amount of
regularization A
Solve raw optimization problem to get w
Draw Z = z according to P{Z =z} x e~
return Compute w = w + %

ellzll




Private Empirical Risk Minimization
3. Risk perturbation

® Same procedure, change risk criterion:
fREargmin{ Zﬁ Yi, f(X —i—)\pen(f)}
feF

® Example: Private SVM with finite feature maps (Rubinstein et
al., 2009)



Private SVM - second version

® Main ingredients:
® Random and finite feature map and induced kernel
® Dual optimization solver
® Laplace mechanism

® Pseudocode

Algorithm 2 Private linear SVM with objective perturbation
Input: training data {(Xi, Yi) : i = 1,...,n}, convex loss ¢, parameter ¢,
amount of regularization ), finite feature map ® : RY — R and induced
kernel
Solve dual optimization problem to get a based on induced kernel
Compute w = Y7, &; Yid(X;)
Draw IID sample Z = z from Laplace distribution (0, \)
return Compute W = W + z




Private Empirical Risk Minimization
4. Algorithm perturbation

® Same procedure, change algorithm:

o~

1 n
fA € argmi f§ Y:, F(X; f
ewrgnnnfe;{n ,-,lé( , F(Xi)) + Apen( )}

® Example: Private SGD (Abadi et al. (2016), Song et al.
(2013))



Non-private SGD

Zﬁ (xi, 1)) + AR(w)

wo =0 * select a random data point
Fort=1,2,...,T
iy ~ Unif{1,2,...,n}
g = VU Wi_1, (Xi,, ¥i,)) + AVR(W;_1)
wi = (Wit — n:8t)

W = W

* take a gradient step



Private SGD with noise

Z[ s (Xiy¥i)) + AR(w)

wy =0 * select random data point
Fort=1,2,...,T
iy ~ Unif{1,2,...,n}
Z ~ P 5)(z)
gt =zt + VW1, (Xi,,Yi,)) + AVR(Wr 1)
wi = (w1 — mi8t)
W = wrp

* add noise to gradient

-

[SCS15]



Differential privacy
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Differential Privacy
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Definition of differential privacy
Dwork, McSherry, Nissim, Smith (2006)

¢ Consider A(S) where A is a randomized algorithm operating
on a data set S

® Let S’ be a data set which differs from S by one data point.
® We consider that the randomized algorithm will satisfy

differential privacy at level ¢ (privacy loss) if the following
loglikelihood ratio is uniformly bounded over S; S’ and B :

sup sup
B S,5




Check theorems for Private SVM

e We refer to Chaudhuri et al. (2011) or Rubinstein et al.
(2009)

® Under some assumptions, differential privacy is guaranteed
with some ¢



Discussion and further topics related to privacy



Some names on differential privacy

e Cynthia Dwork (Harvard) - 2014 book on " The Algorithmic
Foundations of Differential Privacy” (with Aaron Roth)

¢ Helen Nissenbaum (Cornell Tech)

® Catuscia Palamidessi (INRIA, France) - book and Master
course about Foundations of Privacy

e Kamalika Chaudhuri* (UCSD) - NIPS 2017 tutorial

¢ Aurélien Bellet* (INRIA, France) - Master course on Privacy
Preserving Machine Learning

*more ML flavor in their research

Check workskop series at the Simons Foundation on "Data
Privacy: Foundations and Applications” - Jan. 15 — May 17, 2019



Typical expected guarantees of
privacy-preserving methods (Dwork, 2014)

future-proof (side information, post-processing)
group privacy
permanence through composition

programmable



Further topics

Regulatory - How to account for privacy?

Implementation - Where to place sanitizers along a pipeline?
How to deal with privacy during the data exploration stage?
Can deep learning preserve the privacy of all its parameters
and still generalize?

Under constraints - How to optimize privacy budget along
several stages 7

preprocessing/ training/ cross-validation/ testing/
hyperparameter calibration

Resilience to attacks



Distributed Machine Learning



Why looking for alternative to centralized
learning?

Latency (loT, multiplication of data sources, sensors, etc.)
Privacy
Jurisdiction (data considered too sensitive to be merged)

Knowledge sharing (" Winner-Takes-All" effect)



Distributed learning

Generally, the output is a parameter, a gradient or a prediction

Goal: Estimate the output by optimizing computing power
through distributed optimization

Assumption 1: Data are collected at the server level

Assumption 2: Data are equally split between nodes
(machines)

Final estimate: Aggregation of local estimates by the central
server

Main setups: One-shot or Multi-round (e.g. stochastic
gradient descent)



Federated learning

Goal: estimate a common output over multiple nodes
(denominated devices or clients) without having access to
data, enhancing privacy (Important warning: the output can
leak information e.g. memorization property of large models)

Assumption 1: Data are collected at the node level

Assumption 2: Nodes do not communicate any observation
data neither to the central server nor between them, but do
transmit their estimate of the output

Final estimate: Aggregation of local estimates by the central
server



Challenges of federated learning

Federated optimization aims at handling data with the following
properties:
® In the cross-device setting (nodes stand for devices/people):
massively distributed counter to distributed learning
assumptions or cross-silo setting (nodes stand for
institutions/entities), the number of nodes, m, can be very
large and can be much larger than the sample size per node.
® Non-i.id. (e.g. algorithm SCAFFOLD or personalization)

® Unbalanced i.e. sample size per node with considerable order
of variations.

® |n the cross-device setting: limited communications, with
frequently unavailable nodes.



Algorithm 3 FedAvg [McMahan et al., 2017]

Initialize model parameter 6y and round t =0
for each round t =0, T do
randomly generate St, a subset of all nodes of size | Cm]
for each node j € S; do
¢ ., = NodeUpdate(j, ;)
end for
Or11 = Zj |/Vj9{+1 with w; proportional to the sample size
t=t+1
end for
return 6:1

Algorithm 4 NodeUpdate(/, 6)

Require: 7, f

B = data of client j splitting in batches of size B
for each epoch e € 1..E do

for each batch b € B do

60=0—LVrf(9,b)

end for
end for
return 0




Experimental results
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Figure 4: Test accuracy versus communication for the CI-
FARI10 experiments. FedSGD uses a learning-rate decay
of 0.9934 per round; FedAvg uses B = 50, learning-rate
decay of 0.99 per round, and E = 5.
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