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Questions raised

Link betwen Machine Learning and human knowledge?

What does it mean to explain?
Academic (data scientistic) view on XAl: " whitening” the
black box

® A priori explainable models: Linear models, Decision Trees
® Research in CS relating decision trees to symbolic Al
(CNF/DNF)
® Posthoc local/global explainability of nonlinear models
® Post hoc counterfactual explanations
Pragmatic view on explainability likely to rethink elements of
the ML pipeline

Engineering view on complex systems: hybrid models
(simulation-based and data-driven)



Reminder: Basic components of ML
algorithms (training)

Training data

Search space as a space of decision/prediction rules with
constraints

Optimization criterion (cost function)

Numerical algorithm to derive an approximate solution



General view on explainability in ML

® Main question: How to translate an algorithm into natural
language?
® Keep in mind that in Machine Learning, there are many
algorithms:
@ Prediction rule (a mathematical function)
@ Training algorithm (a data-dependent procedure to build a
prediction rule)
© A full ML pipeline including software, hardware and
human-in-the-loop: labeling data, preprocessing, monitoring,
recalibration, an interface with the environment and the
operator
@ Metalearning or learning-to-learn: from single system to many
systems



General Principles of Interpretable ML
(Rudin, 2019)

® Principle 1 - An interpretable machine learning model obeys a
domain-specific set of constraints to allow it (or its predictions, or
the data) to be more easily understood by humans. These
constraints can differ dramatically depending on the domain.

® Principle 2 - Despite common rhetoric, interpretable models do not
necessarily create or enable trust — they could also enable distrust.
They simply allow users to decide whether to trust them. In other
words, they permit a decision of trust, rather than trust itself.



General Principles of Interpretable ML
(Rudin, 2019)

Principle 3 - It is important not to assume that one needs to make a
sacrifice in accuracy in order to gain interpretability. In fact,
interpretability often begets accuracy, and not the reverse.
Interpretability versus accuracy is, in general, a false dichotomy in
machine learning.

Principle 4 - As part of the full data science process, one should
expect both the performance metric and interpretability metric to
be iteratively refined.

Principle 5 - For high stakes decisions, interpretable models should
be used if possible, rather than "explained” black box models.



The Rashomon effect (Breiman, 2001 ;
Semenova, Rudin, Parr, 2022)

Empirical risk

Hypothesis space

(a) From the side (b) From above

(c) From underneath
Definition 1 (Rashomon set). Given 0 >0, a data set S, a hypothesis space F, and a loss function ¢, the
Rashomon set Rye(F,0) is the subspace of the hypothesis space defined as follows:

Rot(F.0) = {f € F: L(f) < L(f) + 0},

where f is_an empirical risk minimizer for the training data S with respect to loss function ¢: f €
argmin gz L(f).




Out-of-distribution uncertainty: regimes of
accuracy may induce regimes of
explainability

Training data
™ Uncertainty

(a) Deep Ensemble (b) MC-Dropout (c) MaxWEnt (d) MaxWEnt + Clip

From (De Mathelin, Deheeger, Mougeot, Vayatis, 2023)



Notions of ML explainability

e Causal explanation: logical rules or key drivers or combination
of factors which explain the prediction

e Statistical explanation: statistics of the training set, e.g.

< you are diagnosed X, you have 40% of chances to recover >

e Contextual explanation: could be traced by clustering the data
set by date for instance

¢ Explanation of the impact of the prediction: relies on post
processing the prediction outcome within the decision process

e Counterfactual explanations: variables for which small
perturbation induce opposite decision

...and tools: XAl by DARPA, WHAT-IF by Google, and more
(check Boza-Evgeniou, INSEAD Working paper, 2021)



How much complexity can be handled by
Humans?

e Sparsity - The law of the seven (+4/-2) objects

George A. Miller. " The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing Information“,
Psychological Review, 1956.

e Expository power - Humans are seriously limited in
estimating the association between three or more variables.
D Jennings, TM Amabile, and L Ross. Informal covariation
assessment: Data-based vs. theory-based judgments. In Judgment
under uncertainty: Heuristics and biases, pages 211-230, 1982

e Monotonicity — < We understand what we already know >
Stefan Riping. Learning interpretable models. PhD thesis,
Universitat Dortmund, 2006.



Global explainability of linear models



Result table for a simple linear model

Summary of Fit

RSquare 0.025173
RSquare Adj 0.021194
Root Mean Square  1.11995t

Error

Mean of Response  0.799874

Observations (or 247
Sum Wgts)
Analysis of Variance
Source DF Sum of Mean F Ratio
Squares Square
Model 1 7.9354 7.9354 6.3266
Error 245 307.30094 1.25429 Prob > F
C. Total 246 315.23634 0.0125
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 2.2885955 0.596146 3.84 0.0002
Initial TL (mm) -0.015478 0.006153 -2.52 0.0125



Interpretability in linear models

® General interpretation in small dimensions

® Sensitivity analysis: effect of increment of one variable on the
outcome (all other variables being fixed

® Variable importance measured with the t-statistic (coefficient
divided by it standard error)

¢ Individual Conditional Expectation plot (ICE): plots the
variations of the outcome with respect to the variations of a
single variable (Goldstein et al. , 2015)

® Partial Dependence Plots (PD): same but with respect to a
subgroup of variables

® In high dimensions:

® Sparsity and structured sparsity
® Integer linear models and interpretable constraints (Ustun and
Rudin, 2016)



Sparsity and Structured sparsity
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® The idea is to reduce the dimension of the linear model while
preserving the underlying structure

e Similar with matrix estimation (see Savalle, Richard, Vayatis,
2012)



Other example: Fused LASSO

Indlexx

e Enforcing temporal coherence leads to adding a penalty term:

d

By € argrrbin 1Y = XB|1> + A8l + ,UZ 1Bj — Bj-1l
BeR j=2



Global explainability of nonlinear models



Interpretability in nonlinear models

Ideal interpretable systems are expert systems
Decision trees

® do provide by construction inference data-driven explanations
Random Forests

® Variable importance

Issue with tree size and redundancy (lzza, Ignatiev,
Marques-Silva, 2022)

Modern view : causal inference (Prosperi, M., Guo, Y.,
Sperrin, M. et al. , 2020)



Expert systems provide causal explanations

Example of a fault tree with logical gates combining unitary events
to explain the top event



Decision trees also provide causal
explanations and they can be learned from
data

Is the minimum systolic blood pressure
over the initial 24-hour period > 91?

@ %

|ls age > 62.57 | (High Risk )

¢ %

Ils sinus tachycardia present? | Gow Risk)

& 3

High Risk ) Low Risk

Reference: CART Book
Breiman, Friedman, Olshen, and Stone (1984).



But what if the optimal tree looks like
this?




Modern view: causal inference

(Electronic medical records) @

PO —';"L ROIT)
¢ Personal Y 7 Guidelines

lifestyle

Change arisk Choose a new
-_behaviour - *._treatment

P(D 1 do(A)) PO do(T))
. Intervene
Make data

(Randomized controlled trials)

From Prosperi, M., Guo, Y., Sperrin, M. et al. Causal inference and

counterfactual prediction in machine learning for actionable healthcare.

Nat Mach Intell 2, 369-375 (2020).
https://doi.org/10.1038/s42256-020-0197-y




Variable importance in ensemble of trees

Variable importance is based on counting how many times a
variable is used in a split along the decision trees with a coefficient
which is proportional to the decrease of impurity at that very node.

Random Forest Variable Importance (Top 25)

Example from [ Baumann, Annika;
Haupt, Johannes; Lessmann, Stefan;
and Gebert, Fabian (2019) " The
Price of Privacy - An Evaluation of
the Economic Value of Collecting

Clickstream Data,” Business &
Information Systems Engineering:
Vol. 61: Iss. 4, 413-431]]

ion
Identifiable




Local explainability: LIME/SHAP /counterfactual



Posthoc analysis: local approximation

LIME: Local Interpretable Model-Agnostic Explanations
[Ribeiro, Singh, Guestrin, (2016)]
Consider a black-box model f and an evaluation point x, then:
@ Generate a collection 7(x) of points similar to x
(perturbations of x or instances in the vicinity of x
@® Select an interpretable set of functions (linear, decision trees,
ensemble of shallow trees)
© Estimate a local approximation g € G of the black-box f
based on the following optimization problem:

loc-explanation(x) € argmin {L(f, g, m(x)) + Q(g)}
ge€g

where L discrepancy measure between f and g using a collection
7(x) of points similar to the evaluation point x and (-)
regularizer which enforces interpretability /sparsity
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Figure 3: Toy example to present intuition for LIME.
The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink
background, which cannot be approximated well by

a linear model.

The bold red cross is the instance

being explained. LIME samples instances, gets pre-
dictions using f, and weighs them by the proximity
to the instance being explained (represented here
by size). The dashed line is the learned explanation
that is locally (but not globally) faithful.



Posthoc analysis: Shapley additive
explanation

from [Lundberg and Lee, NeurlPS'17]

Definition 1 Additive feature attribution methods have an explanation model that is a linear
Jfunction of binary variables:

M
a(2') =do + Y izl 1)
i=1

where 2 € {0,1}M, M is the number of simplified input features, and ¢; ¢ R.
Theorem 1 Only one possible explanation model g follows Definition 1 and satisfies Properties 1, 2,

and 3: o
2! 2 3
dilfiz) = M [f=(z") — fa(2 \3) 8)
#Cat
where |2'| is the number of non-zero entries in 2, and z' C x' represents all ' vectors where the
non-zero entries are a subset of the non-zero entries in '



Posthoc analysis: counterfactual
explanations

Given a black-box f and an instance x, find counterfactual
instances which are similar but would flip the label of x through f
[Wachter,Mittelstadt, Russell (2018)]

® The counterfactual instances are synthetic and can be
obtained by solving an optimization problem of the form:

counterfactual(x) € argmin {{(f(x'),y") + Ad(X', x)}

where £ loss function which provides pointwise evaluation of
discrepancy between prediction and label and d is a distance
between instances, A is a smoothing parameter

® |t is possible to obtain several counterfactual instances by
tuning the smoothing parameter A



Counterfactuals

Example from credit scoring
Instance x of interest

age  sex job housing savings checking amount  duration purpose

58 f unskilled  free little little 6143 48 car

Counterfactual explanations x’:

age sex job amount duration 02 03 03 f@)

skilled -20 0.108 2 0.036 0.501

skilled -24 0.114 2 0.029 0.525

skilled -22 0.111 2 0.033 0.513
-6 skilled -24 0.126 3 0.018 0.505
-3 skilled -24 0.120 3 0.024 0.515
-1 skilled -24 0.116 3 0.027 0.522
-3 m -24 0.195 3 0.012 0.501
-6 m -25 0.202 3 0.011 0.501
-30 m skilled -24 0.285 4 0.005 0.590

-4 m -1254 -24 0.204 4 0.002 0.506



Complex phenomena: from explainability to
knowledge...



Understanding of complex systems

Motivations and Challenges for Digital Twins in health, industry...

@ Understanding/Anticipating the behavior of the full system at
scale

Challenge #1: system-level (multiscale, multiphysics...) and
lifecycle-level modeling

® Benefits of simulations to reduce the number of physical
experiments (if possible)

Challenge #2: computational feasibility (real-time in some
cases)

© Assessment of interventions on the system

Challenge #3: Blending expertise from physics and data
in the grey zone



The grey zone of physical models

The limits of physics to describe complex systems

@ only fundamental mechanisms explained by physical laws,
while variability in real systems may arise from
unreported /unobserved /unrecorded factors

@ highly refined physical models bring heavy simulations which
may not be compatible with real-life operations (need to run
in real-time for instance)

© sensitivity to high dimensional parameters may compromise

the ability to monitor all possible outcomes (experimental
design may suffer from the curse of dimensionality)



The grey zone of data-driven models

The limits of data-driven models (parametric statistics or machine
learning)

® Complex models (e.g. neural networks) trained on high
dimensional databases with small sample size may overfit

® Out of the domain of training data, prediction accuracy
cannot be guaranteed

©® Knowledge transfer to perform cold start on a new instance of
the complex system (say new factory, new design) raises
fundamental issues on the use and validity of any statistical
model

O Adoption of data-driven models by human experts requires
some level of interpretability /explainability /transparency
which cannot be provided through functions with complex
dependencies (like neural networks).



Discussion

® Explainable Al as an academic field may not be that useful to
address societal /industrial needs

® Probably there might not be a universal notion of
explainability, it might even be user-specific as <« we
understand what we already know >. ..

® |Interesting lead that ML may be itself a tool for scientific
exploration and explainability of complex phenomena



Al for good

Sendhil Mullainathan

Analgorithmic approach to reducing unexplained pain
disparities in underserved populations

Emma Pierson, David M. Cutler, Jure Leskovec, Sendhil © & Ziad Obermeyer

Nature Medicine 27, 136-140 (2021) | Cite this article

16k Accesses | 114 Citations | 738 Altmetric | Metrics

Abstract

Underserved popula(lons expenencc h|gher levels of pain. These disparities persist even
after ing for i ity of diseases lik hritis, as graded by human

physicians using medical images, raising the possibility that underserved patients’ pain stems
from factors external to the knee, such as stress. Here we use a deep learning approach to
measure the severity of osteoarthritis, by using knee X-rays to predict patients’ experienced

pain. We show that thi: h i reduce: i racial di: ities in pain.
Relative to standard measures of severity graded by radiologists, which accounted for only
9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions
accounted for 43% of disparities, or 4.7x more (95% Cl, 3.2-11.8x), with similar results for

I i d | d d patients. Thi that much of underserved patients’
pain stems from factors within the knee not reflected in standard radiographic measures of
severity. We show that the algorithm’s ability to reduce unexplained disparities is rooted in
the racial and socioeconomic diversity of the training set. Because algorithmic severity
‘measures better capture underserved patients’ pain, and severity measures influence
treatment decisions, algorithmi ictions could ially redress disparities in access to
treatments like arthroplasty.




“I think that neuroscience will be again a source of inspiration and will
keep playing a fundamental role for the advances of Al: indeed the best
definition of intelligence we have is the one defined by Turing, which is
deeply filled with human intelligence concepts. Therefore, studying how
our brain works will definitely support us in engineering areas of computer
vision and machine learning. However, more than this, | strongly believe
interdisciplinarity will be at the core of Al future development.
Breakthrough discoveries can only be derived from the cooperation
among computer scientists, engineers and neuroscientists: good news for
institutions such as Center for Brains, Minds and Machines of MIT or
Computation and Cognition Lab of Stanford and other universities, where
there is a good mix of engineering competencies, neuroscience and
cognitive knowledge. Such capabilities are still maybe out of the focus in
several departments of tech giants, where the side of engineering
solutions is privileged.”

from [Interview of Prof. Tomaso Poggio (MIT), March 2019 ]



