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Why Fairness in Al?

"It is the right thing to do”
Fulfill people expectations (e.g., customers, employees, etc)
Regulators require it, potential legal risk

Some popular examples: predictive justice (COMPAS), credit
scoring, housing, hiring, advertising...



Fairness in Al: Some Challenges

How to conceive fair discrimination in machine learning?
How to measure fairness?

How to include fairness consideration in training a model?
What is the trade off with accuracy?

Can we ensure our fairness measure aligns with law?



Reminder on supervised machine learning



(Plain) binary classification

Classifcation model : random pair (X, Y) over RY x {—1,+1}

Posterior probability: n(x) =P{Y | X = x} , Vx € RY
Classifier: g : RY — {—1,+1}

Classification error:  L(g) =P {g(X) # Y}



Variants of classification error

® Asymmetric cost - set w € (0,1),

Lo(g) = 2E((1 — w)I{Y = +1}1{g(X) = ~1}
+wl{Y = —1}I{g(X) = +1})

¢ (Classification with mass constraint - set v € (0, 1)

mgin P(Y # g(X)) subjectto P(g(X)=1)=u



Overview of supervised classification
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The two types of error for general
scoring-based detection

Consider f : R — R a detector response (scoring rule or soft
classifier) and a threshold t € R

An alarm corresponds to the event {g(x) = 1} = {f(x) > t}
True positive rate and false positive rate:

B(f,t)= P{f(X)>t|Y =+1} (TPR)— max
aff,t)= P{f(X)>t|Y =-1} (FPR)— min

Main point: trade-off required since, for given f,

B(f,t) =1 but «ff,t) > 1 whent— —oc0
a(f,t) -0 but B(f,t) -0 whent— 400



A. Fairness Metrics



Overview of fairness concepts in
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Main legal concepts related to unfairness

® Disparate treatment:

Response: ensure equality of opportunity for privileged and
unprivileged

® Disparate outcome:

Response: minimize inequality of outcome (positive and/or
negative) for privileged and unprivileged

® |ndividual vs. group fairness:

Requirement for individual fairness: individuals with similar
characteristics should benefit from the same outcome.



Some examples of simple fairness criteria

® Demographic Parity — “There should be an equal rate of
positive outcomes in the privileged group and in the
unprivileged group”

® Equality of Opportunity — “There should be an equal true
positive rate in the privileged group and in the unprivileged
group”

® Equalized Odds — "There should be an equal true and false
positive rate in the privileged group and in the unprivileged
group”



Setup and notations

Y target variable

X features of an individual (browsing history etc.)
® S sensitive attribute (e.g. gender, race, age, etc.)

F = f(X,S) soft predictor of Y (here, score to show ad or
not)

A few notes:

® Random variables are assumed to live in the same probability
space (in particular we assume that f is randomized)

® We may call 'Group A’ the subset such that S = a...

® These notations may themselves convey some bias...



The three fundamental criteria

@ Independence: F Il S
® Separation: F 1 S conditional on Y

© Sufficiency: Y 1l S conditional on F

All other criteria are special cases, either equivalent or relaxed
versions, of these three.



Fairness criteria (1) - Independence

For any groups a, b and any prediction o then
P{F=0|S=a}=P{F=0|S=0b}
Variants: demographic parity, statistical parity.
Approximate version for binary predictors (example)
IP{F=0|S=a}-P{F=0|S=b}<e,

Some Issues:

® May discard perfect predictor F = Y (since Y may be
correlated with S)

® One may trade false negatives for false positives

® One may reduce errors only in one group and not in the others



Fairness criteria (2) - Separation

For any groups a, b and any prediction o, any outcome y then
P{F=o0|Y=y,S=a}=P{F=0|Y=y,S5=0b}
Variants: equalized odds, equality of opportunity

Some virtues:
® Compatible with perfect predictions F =Y

® Ensures error reduction uniformly in all groups



Fairness criteria (3) - Sufficiency

Intuition: no need to access S to predict Y when F is available, in
other words, the score F has some semantic meaning;:

Note that Bayes rule in least squares regression is:
f(x,s)=E{Y | X =x,5=s}

Method: Sufficiency implied by calibration by group, e.g. for binary
classification with soft classifier prediction o € [0, 1]:
P{Y=1|F=0,S=s}=o0

Calibration by group can be achieved by various standard
calibration methods (if necessary, applied for each group).



The trade-offs of fairness

Main theorem; Any two of the previous criteria are mutually
exclusive!

Some straightforward propositions:

® |f S and Y are not independent then either independence
holds or sufficiency, not both.

® |f S and Y are not independent and F and Y are not
independent then either independence holds or separation, not
both.

e Assume all events in the joint distribution (S, F, Y) have
positive probability. If S and Y are not independent then
either separation or sufficiency, not both.

The latter has been shown by Choudelchova (2016) and Kleinberg
et al. (2016). Many works have studied the case of relaxed and
approximate versions of the theoretical criteria.



A model for risk scores
From [Kleinberg et al., 2016]
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Basic model for assigning scores as probability estimates.

Individuals are either positive or negative (exhibit the behavior or not).
Each individual belongs to group A or B.
Each individual has a set of features, with the data we have access to.

A risk score is a function mapping individuals to discrete “bins,” where
everyone in bin b is assigned a score of vp.



Fairness criteria
From [Kleinberg et al., 2016]
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Desired properties:

@ Calibration within groups: For each group, a v; fraction of people in bin b
are positive.

@ Balance for the positive class: Average score of positive members in
group A equals average score of positive members in group B.

@ Balance for the negative class: Average score of negative members in
group A equals average score of negative members in group B.



Impossibility theorem

Can achieve all three properties in two simple cases:

® Perfect prediction: for each feature set, either everyone is in
the negative class or everyone is in the positive class. (Then
we can assign scores of 0 or 1 to everyone.)

® Equal base rates: the groups have the same fraction of
positive instances. (Then there's a trivial risk score equal to
this base rate for everyone.)

Theorem [Kleinberg-Mullainathan-Raghavan 2016]. In any
instance of risk score assignment where all three properties can be

achieved, we must have either perfect prediction or equal base
rates.



Impossibility theorem - sketch of proof
From [Kleinberg et al., 2016]

Let N; be the number of people in group t.

° ° . - .
0.000 2. :. o %o 0,0 Let k¢ be the number of people in the positive class in group t.
OZo o, ° o® 0° (By calibration, &; is also the total score in group t.)
01 02 04 06 Let x be the average score of a person in the negative class.

Let y be the average score of a person in the positive class.

Let N, be the number of people in group ¢ (Note: independent of which group t we're talking about.)
1

Let k; be the number of people in the positive class in group t.

The calibration condition implies: Total score in group t is
s Unless sl
@ The total score of all group-t people in bin b equals (Ne — ke)x + key = k. (h’:s:mfef":;;:'e
the expected number of group-t people in the positive class in bin b et o)

Summing over all bins: Rearranging:

@ The total score of all group-t people equals x=(1—y)—
the expected number of group-t people in the positive class. Ny —




Impossibility theorem - sketch of proof

back to our notations

e Calibration condition: for any group t, for any score bin b,
Vb]P(f:Vb|5:t):P(Y:1,f: Vb’5:t)
® Summing over all bins: for any group t,

Y wP(f=v|S=t)=P(Y=1|S5=t)
b

then
E(f [ S=t)=P(Y=1|S=1)¥ p,

but we have:

E(f |S=t)=pE(f|S=t,Y =1)+(1-p)E(f | S=1t,Y =0)



An overview of fairness criteria
From [Barocas-Hardt-Narayanan, 2021]

Name Closest relative Note Reference
Statistical parity Independence  Equivalent Dwork et al. (2011)
Group fairness Independence  Equivalent
Demographic parity Independence  Equivalent
Conditional statistical parity Independence  Relaxation Corbett-Davies et al. (2017)
Darlington criterion (4) Independence  Equivalent Darlington (1971)
Equal opportunity Separation Relaxation Hardt, Price, Srebro (2016)
Equalized odds Separation Equivalent Hardt, Price, Srebro (2016)
Conditional procedure accuracy Separation Equivalent Berk et al. (2017)
Avoiding disparate mistreatment Separation Equivalent Zafar et al. (2017)
Balance for the negative class Separation Relaxation  Kleinberg, Mullainathan, Raghavan (2016)
Balance for the positive class Separation Relaxation ~ Kleinberg, Mullainathan, Raghavan (2016)
Predictive equality Separation Relaxation Chouldechova (2016)
Equalized correlations Separation Relaxation Woodworth (2017)
Darlington criterion (3) Separation Relaxation Darlington (1971)
Cleary model Sufficiency Equivalent Cleary (1966)
Conditional use accuracy Sufficiency Equivalent Berk et al. (2017)
Predictive parity Sufficiency Relaxation Chouldechova (2016)
Calibration within groups Sufficiency Equivalent Chouldechova (2016)

Darlington criterion (1), (2) Sufficiency Relaxation Darlington (1971)




Alignment with Law

Consider two types of fairness in ML approaches:
® Bias Preserving
® Bias Transforming/Correcting

Which approaches fall in each category?

Check [Wachter, Mittelstadt, Russell (2021)]

https:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772

B. Incorporating Fairness in Machine Learning
Models



Three levels to ensure fairness

@ Preprocessing: discrimination-free training data
® Relabeling
® Resampling
® Fair representations
® Postprocessing : correcting biased predictors
® output correction
® input correction
® classifier correction

© Fairness-aware ML algorithms



Starting point: Equality of opportunity

Simplified setup: Outcome Y is binary {0,1} and predictor F is
binary-valued.

Equal opportunity means we have the same true positive rate for
each group: for any groups a, b then:

P{F=1|Y=1S=a=P{F=1|Y=1,5=b}

(same true positive rates. Equalized odds extend the concept to
both the positive and the negative class.)



Learning while imposing fairness

Theoretical formulation - Minimize classification error with fairness
constraints over real-valued f:

mfin L(f)
such that:
P{f(X,S)>0|Y =1,S=a} =P{f(X,S)>0|Y =1,5= b}
(equality of opportunity constraint)

From [Donini, Oneto, Ben-David, Shawe-Taylor, Pontil (NeurlPS, 2018)]



Relaxed formulation

Fair empirical risk minimization

® Set:

L2 =P{f(5,5)>0|Y=1S5=a},
LHb —P{f(X,5)>0|Y =1,5=b}

® Relaxed fairness constraint: for some ¢ € [0, 1]
|L+,3 _ L+,b| <e

e FERM with empirical counterparts:

such that:



Making things work with kernels

® Using the binary loss in the criterion and in the fairness
constraint makes the problem non convex.

® Using the hinge loss in the criterion and the linear loss in the
fairness constraint makes the problem convex.



Fair kernel methods
Optimization problem

¢ Introducing a Hilbert space H such that x — ¢(x) € H, we
consider that candidate functions f are of the form:

F(x) = (w, 9(X))

® The constraint becomes:
(w,u)| <e

1
where v = u; — up and u, = e Z o(x;)
€T+
e Optimization problem (in feature space):

0((w, d(Xi)), yi) + A , h that <
%Z )).i) + Allwlff, . such that |(w, u)| <



Fair kernel methods
Results from Donini et al.

Arrhythmia COMPAS

Adult German Drug
Method ACC | DEO ACC | DEO

ACC|DEO| ACC | DEO | ACC | DEO

s inside @

Naive Lin. SVM[0.79+£0.06 {0.14+0.03|0.764+0.01[0.17£0.02(0.810.14[0.7140.060.17+0.05[0.81+0.02|0.44+0.03

0
Lin. SVM 0.78+0.07|0.13£0.04(0.7540.01 (0.1540.02|0.80|0.13|0.6940.04|0.11£0.10|0.81£0.02(0.41+0.06
Hardt 0.7440.06|0.07+0.04(0.6740.03|0.2140.09|0.80|0.10(0.614+0.15|0.1540.13|0.77+0.02(0.22+0.09
Zafar 0.7140.03]0.03£0.02(0.6940.02|0.1040.06|0.78|0.05 [0.6240.09|0.1340.11|0.69£0.03[0.02+0.07
Lin. Ours 0.7940.07]0.04£0.03[0.764+0.01|0.0440.03|0.77|0.01|0.6940.04|0.0540.03|0.79+0.02[0.05+0.03
Naive SVM 0.7940.06[0.14£0.04[0.76+0.01|0.184+0.02{0.84[0.18(0.7440.05(0.12£0.05[0.82£0.02[0.45+0.04
SVM 0.7840.06|0.13£0.04{0.7340.01 |0.1440.02|0.82|0.14(0.7440.03|0.10£0.06 | 0.81£0.02(0.38+0.03
Hardt 0.7440.06|0.0740.04|0.7140.01|0.0840.01|0.82(0.11{0.71£0.03|0.11£0.18|0.7540.11|0.1440.08
Ours 0.7940.09]0.03+0.02[0.7340.01|0.054-0.03]0.81]0.01|0.7340.04]0.0540.03|0.80+0.03[0.07+0.05
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C. Issues to Consider



Sources of bias

Biases in data or models - 23 different types of bias have been
reported but most important are:

® Selection bias such as sampling bias
¢ Information bias such as missing factors (Simpson's paradox)

® Confounding factors



Example of confounding factors

Old people
Move ty \Develop
Florida Alzheimer’s
Smokers

Like to drml/ \Vvelop

Coffee Pancreatic cancer



Methodology to address confounding
factors in healthcare studies

® Step 1: Measure and report all potential confounders

® Step 2: Routinely assess the role of confounding factors and
adjust for them in analyses

® Step 3: Report adjusted and crude estimates of association

and discuss limitations of the study that may be due to
confounding and the magnitude of the influence

Skelly, A. C., Dettori, J. R., Brodt, E. D. (2012). Assessing bias: the
importance of considering confounding. Evidence-based spine-care
journal, 3(1), 9-12.



Two-sample comparison
An add-on to detect and assess bias

At a level of significance a € (0, 1), the following test is performed:

1 1
"Ho: W :/ o" versus"Hi: W} < / &
0 0

Testing procedure. Let {D;, D,} disjoint partition of the initial dataset Dy.

1. Ranking.
(i) Find the optimal scoring rule § := 3§, .m, on D1,

(i) Compute the sequence of ranks {R(5(X;))}n, <i<n over the second pooled sample
Dhy,my-

2. Rank-sum statistical test. Reduce and center the statistic an_m2(§) to perform
the test 0(%; X1, .+ Xny, Y1, 0, Yimy) 1= I{ Wiy, my (8) > g5 %(8)}, where g}~ is
the (1 — av)-quantile of the distribution under Hg of the statistic used depending on ¢,
considered as test’s threshold.

Result. If step (1) leads to a universally consistent scoring rule in the W-ranking
performance measure sense, the score-based rank-sum statistical test is universally
consistent at level a as N — oo.



Further topics

® Fairness with optimal transport
[Eustasio del Barrio, Fabrice Gamboa, Paula Gordaliza, Jean-Michel
Loubes (2019). Obtaining Fairness using Optimal Transport Theory.
Proceedings of PMLR.]

® How to unveil sensitive variables?
[Jens Ludwig, Sendhil Mullainathan (2023). Machine Learning as a
Tool for Hypothesis Generation. NBER 31017.]



