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Why Fairness in AI?

• ”It is the right thing to do”

• Fulfill people expectations (e.g., customers, employees, etc)

• Regulators require it, potential legal risk

• Some popular examples: predictive justice (COMPAS), credit
scoring, housing, hiring, advertising...



Fairness in AI: Some Challenges

• How to conceive fair discrimination in machine learning?

• How to measure fairness?

• How to include fairness consideration in training a model?

• What is the trade off with accuracy?

• Can we ensure our fairness measure aligns with law?



Reminder on supervised machine learning



(Plain) binary classification

• Classifcation model : random pair (X ,Y ) over Rd ×{−1,+1}

• Posterior probability: η(x) = P {Y | X = x} , ∀x ∈ Rd

• Classifier: g : Rd → {−1,+1}

• Classification error: L(g) = P {g(X ) ̸= Y }



Variants of classification error

• Asymmetric cost - set ω ∈ (0, 1),

Lω(g) = 2E
(
(1− ω)I{Y = +1}I{g(X ) = −1}

+ ωI{Y = −1}I{g(X ) = +1}
)

• Classification with mass constraint - set u ∈ (0, 1)

min
g

P(Y ̸= g(X )) subject to P(g(X ) = 1) = u



Overview of supervised classification



The two types of error for general
scoring-based detection

• Consider f : Rd → R a detector response (scoring rule or soft
classifier) and a threshold t ∈ R

• An alarm corresponds to the event {g(x) = 1} = {f (x) ≥ t}

• True positive rate and false positive rate:

β(f , t) = P {f (X ) ≥ t | Y = +1} (TPR) → max
α(f , t) = P {f (X ) ≥ t | Y = −1} (FPR) → min

• Main point: trade-off required since, for given f ,

β(f , t) → 1 but α(f , t) → 1 when t → −∞
α(f , t) → 0 but β(f , t) → 0 when t → +∞



A. Fairness Metrics



Overview of fairness concepts in
classification



Main legal concepts related to unfairness

• Disparate treatment:

Response: ensure equality of opportunity for privileged and
unprivileged

• Disparate outcome:

Response: minimize inequality of outcome (positive and/or
negative) for privileged and unprivileged

• Individual vs. group fairness:

Requirement for individual fairness: individuals with similar
characteristics should benefit from the same outcome.



Some examples of simple fairness criteria

• Demographic Parity — “There should be an equal rate of
positive outcomes in the privileged group and in the
unprivileged group”

• Equality of Opportunity — “There should be an equal true
positive rate in the privileged group and in the unprivileged
group”

• Equalized Odds — “There should be an equal true and false
positive rate in the privileged group and in the unprivileged
group”



Setup and notations

• Y target variable

• X features of an individual (browsing history etc.)

• S sensitive attribute (e.g. gender, race, age, etc.)

• F = f (X , S) soft predictor of Y (here, score to show ad or
not)

A few notes:

• Random variables are assumed to live in the same probability
space (in particular we assume that f is randomized)

• We may call ’Group A’ the subset such that S = a...

• These notations may themselves convey some bias...



The three fundamental criteria

1 Independence: F ⊥⊥ S

2 Separation: F ⊥⊥ S conditional on Y

3 Sufficiency: Y ⊥⊥ S conditional on F

All other criteria are special cases, either equivalent or relaxed
versions, of these three.



Fairness criteria (1) - Independence

For any groups a, b and any prediction o then

P{F = o | S = a} = P{F = o | S = b}

Variants: demographic parity, statistical parity.

Approximate version for binary predictors (example)

|P{F = o | S = a} − P{F = o | S = b}| ≤ ε ,

Some Issues:

• May discard perfect predictor F = Y (since Y may be
correlated with S)

• One may trade false negatives for false positives

• One may reduce errors only in one group and not in the others



Fairness criteria (2) - Separation

For any groups a, b and any prediction o, any outcome y then

P{F = o | Y = y ,S = a} = P{F = o | Y = y ,S = b}

Variants: equalized odds, equality of opportunity

Some virtues:

• Compatible with perfect predictions F = Y

• Ensures error reduction uniformly in all groups



Fairness criteria (3) - Sufficiency

Intuition: no need to access S to predict Y when F is available, in
other words, the score F has some semantic meaning:

Note that Bayes rule in least squares regression is:

f (x , s) = E{Y | X = x ,S = s}

Method: Sufficiency implied by calibration by group, e.g. for binary
classification with soft classifier prediction o ∈ [0, 1]:
P{Y = 1 | F = o,S = s} = o

Calibration by group can be achieved by various standard
calibration methods (if necessary, applied for each group).



The trade-offs of fairness

Main theorem; Any two of the previous criteria are mutually
exclusive!

Some straightforward propositions:

• If S and Y are not independent then either independence
holds or sufficiency, not both.

• If S and Y are not independent and F and Y are not
independent then either independence holds or separation, not
both.

• Assume all events in the joint distribution (S ,F ,Y ) have
positive probability. If S and Y are not independent then
either separation or sufficiency, not both.

The latter has been shown by Choudelchova (2016) and Kleinberg
et al. (2016). Many works have studied the case of relaxed and
approximate versions of the theoretical criteria.



A model for risk scores
From [Kleinberg et al., 2016]



Fairness criteria
From [Kleinberg et al., 2016]



Impossibility theorem

Can achieve all three properties in two simple cases:

• Perfect prediction: for each feature set, either everyone is in
the negative class or everyone is in the positive class. (Then
we can assign scores of 0 or 1 to everyone.)

• Equal base rates: the groups have the same fraction of
positive instances. (Then there’s a trivial risk score equal to
this base rate for everyone.)

Theorem [Kleinberg-Mullainathan-Raghavan 2016]. In any
instance of risk score assignment where all three properties can be
achieved, we must have either perfect prediction or equal base
rates.



Impossibility theorem - sketch of proof
From [Kleinberg et al., 2016]



Impossibility theorem - sketch of proof
back to our notations

• Calibration condition: for any group t, for any score bin b,

vbP(f = vb | S = t) = P(Y = 1, f = vb | S = t)

• Summing over all bins: for any group t,∑
b

vbP(f = vb | S = t) = P(Y = 1 | S = t)

then
E(f | S = t) = P(Y = 1 | S = t)

def
= pt

but we have:

E(f | S = t) = ptE(f | S = t,Y = 1)+(1−pt)E(f | S = t,Y = 0)



An overview of fairness criteria
From [Barocas-Hardt-Narayanan, 2021]



Alignment with Law

Consider two types of fairness in ML approaches:

• Bias Preserving

• Bias Transforming/Correcting

Which approaches fall in each category?

Check [Wachter, Mittelstadt, Russell (2021)]
https:

//papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3792772


B. Incorporating Fairness in Machine Learning
Models



Three levels to ensure fairness

1 Preprocessing: discrimination-free training data
• Relabeling
• Resampling
• Fair representations

2 Postprocessing : correcting biased predictors
• output correction
• input correction
• classifier correction

3 Fairness-aware ML algorithms



Starting point: Equality of opportunity

Simplified setup: Outcome Y is binary {0, 1} and predictor F is
binary-valued.

Equal opportunity means we have the same true positive rate for
each group: for any groups a, b then:

P{F = 1 | Y = 1,S = a} = P{F = 1 | Y = 1, S = b}

(same true positive rates. Equalized odds extend the concept to
both the positive and the negative class.)



Learning while imposing fairness

Theoretical formulation - Minimize classification error with fairness
constraints over real-valued f :

min
f

L(f )

such that:

P{f (X ,S) > 0 | Y = 1,S = a} = P{f (X , S) > 0 | Y = 1, S = b}

(equality of opportunity constraint)

From [Donini, Oneto, Ben-David, Shawe-Taylor, Pontil (NeurIPS, 2018)]



Relaxed formulation
Fair empirical risk minimization

• Set :

L+,a = P{f (S ,S) > 0 | Y = 1,S = a} ,
L+,b = P{f (X ,S) > 0 | Y = 1,S = b}

• Relaxed fairness constraint: for some ε ∈ [0, 1]

|L+,a − L+,b| ≤ ε

• FERM with empirical counterparts:

min
f

L̂(f )

such that:
|L̂+,a − L̂+,b| ≤ ε



Making things work with kernels

• Using the binary loss in the criterion and in the fairness
constraint makes the problem non convex.

• Using the hinge loss in the criterion and the linear loss in the
fairness constraint makes the problem convex.



Fair kernel methods
Optimization problem

• Introducing a Hilbert space H such that x 7→ ϕ(x) ∈ H, we
consider that candidate functions f are of the form:
f (x) = ⟨w , ϕ(X )⟩

• The constraint becomes:

|⟨w , u⟩| ≤ ε

where u = ua − ub and ua =
1

n+,a

∑
i∈I+,a

ϕ(xi )

• Optimization problem (in feature space):

min
w∈H

n∑
i=1

ℓ(⟨w , ϕ(Xi )⟩, yi ) + λ∥w∥2H , such that |⟨w , u⟩| ≤ ε



Fair kernel methods
Results from Donini et al.



C. Issues to Consider



Sources of bias

Biases in data or models - 23 different types of bias have been
reported but most important are:

• Selection bias such as sampling bias

• Information bias such as missing factors (Simpson’s paradox)

• Confounding factors



Example of confounding factors



Methodology to address confounding
factors in healthcare studies

• Step 1: Measure and report all potential confounders

• Step 2: Routinely assess the role of confounding factors and
adjust for them in analyses

• Step 3: Report adjusted and crude estimates of association
and discuss limitations of the study that may be due to
confounding and the magnitude of the influence

Skelly, A. C., Dettori, J. R., Brodt, E. D. (2012). Assessing bias: the

importance of considering confounding. Evidence-based spine-care

journal, 3(1), 9–12.



Two-sample comparison
An add-on to detect and assess bias



Further topics

• Fairness with optimal transport
[Eustasio del Barrio, Fabrice Gamboa, Paula Gordaliza, Jean-Michel

Loubes (2019). Obtaining Fairness using Optimal Transport Theory.

Proceedings of PMLR.]

• How to unveil sensitive variables?
[Jens Ludwig, Sendhil Mullainathan (2023). Machine Learning as a

Tool for Hypothesis Generation. NBER 31017.]


