

http://www.centreborelli.fr

Introduction to Statistical Learning

Nicolas Vayatis

nicolas.vayatis@ens-paris-saclay.fr

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The goal of supervised machine learning

Finding a function

• Example : Pedestrian detection from video cameras

・ロト ・ 同ト ・ ヨト ・ ヨト

э

• What is the search space for such a function?

The art of machine learning

Solving the "bias-variance" trade-off

• Distance between solution provided by a learning method and the optimal solution (function): sum of *Approximation error* and *Estimation error*

- Learning a function amounts to:
 - (a) chosing a search space (design process),
 - (b) estimating the best function in this space (training process).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

The three paradigms of ML

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Local methods: based on grouping and local voting (or averaging)
 - *k*-Nearest-Neighbors
 - Kernel rules
 - Decision trees
- 2 Global methods: based on function optimization
 - Regularized regression (Ridge, LASSO...)
 - Support Vector Machines
 - Boosting
 - Feedforward neural networks
- **3** Ensemble methods: based on resampling and aggregation
 - Bagging
 - Boosting
 - Random forests

Shallow vs. Deep Learning

Shallow learning: often relates to Tikohnov's regularization

$$\min_{h\in\mathcal{H}}\left(\frac{1}{n}\sum_{i=1}^{n}\ell(h(X_i),Y_i)+\lambda_n\cdot\operatorname{pen}(h,n)\right)$$

- The penalty controls the variance term (Occam's razzor)
- It may also induce a desired structure of the function (e.g. sparsity).
- Deep Learning:
 - Universal approximators (zero bias)
 - No penalty term in the optimization but lots of tricks in the implementation which amount to implicit regularization

Bias-variance revisited

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Trade-off wrt: Search space \mathcal{F} , sample size *n*, numerical tolerance ρ

		F	n	ρ
Eapp	(approximation error)	X		
$\mathcal{E}_{\mathrm{est}}$	(estimation error)	7	X	
Eopt	(optimization error)			7
T	(computation time)	1	1	X

[The trade-offs of Large Scale Learning, L. Bottou, O. Bousquet, 2011]

The loss landscape of Deep Learning

View on a 56-layer neural network without skip-connection

From [Visualizing the Loss Landscape of Neural Nets, H. Li, Z. Xu1, G. Taylor, C. Studer, T. Goldstein, 2018]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The theory of a double descent risk curve

How Deep Learning (and random forests) avoid overfitting

From [Reconciling modern machine learning and the bias-variance trade-off, M. Belkin, D. Hsu, S. Ma, S. Mandal, 2018]

化口水 化塑料 化医水化医水

Practical information

• Course website: http:

//nvayatis.perso.math.cnrs.fr/ISLcourse-2020.html

- Tuesday morning 11am-1pm / ENS Paris-Saclay / Amphi Lagrange (1Z14)
- 6 courses + 4 exercise sessions
- Office hours: Tuesday 1pm-2pm

• Evaluation:

- Two mandatory exams: Mid-term exam M + final exam F
- Final grade G = max (F; (F+M)/2)